Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35730565

RESUMEN

Acute and chronic kidney injuries induce increased cell cycle progression in renal tubules. While increased cell cycle progression promotes repair after acute injury, the role of ongoing tubular cell cycle progression in chronic kidney disease is unknown. Two weeks after initiation of chronic kidney disease, we blocked cell cycle progression at G1/S phase by using an FDA-approved, selective inhibitor of CDK4/6. Blocking CDK4/6 improved renal function and reduced tubular injury and fibrosis in 2 murine models of chronic kidney disease. However, selective deletion of cyclin D1, which complexes with CDK4/6 to promote cell cycle progression, paradoxically increased tubular injury. Expression quantitative trait loci (eQTLs) for CCND1 (cyclin D1) and the CDK4/6 inhibitor CDKN2B were associated with eGFR in genome-wide association studies. Consistent with the preclinical studies, reduced expression of CDKN2B correlated with lower eGFR values, and higher levels of CCND1 correlated with higher eGFR values. CDK4/6 inhibition promoted tubular cell survival, in part, through a STAT3/IL-1ß pathway and was dependent upon on its effects on the cell cycle. Our data challenge the paradigm that tubular cell cycle progression is beneficial in the context of chronic kidney injury. Unlike the reparative role of cell cycle progression following acute kidney injury, these data suggest that blocking cell cycle progression by inhibiting CDK4/6, but not cyclin D1, protects against chronic kidney injury.


Asunto(s)
Ciclina D1 , Insuficiencia Renal Crónica , Animales , Ciclo Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Estudio de Asociación del Genoma Completo , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico
2.
Am J Physiol Renal Physiol ; 316(5): F847-F855, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759021

RESUMEN

Flow cytometry studies on injured kidney tubules are complicated by the low yield of nucleated single cells. Furthermore, cell-specific responses such as cell cycle dynamics in vivo have conventionally relied on indirect immunohistochemistry and proximal tubule markers that may be downregulated in injury. Here, we report a new tissue dissociation protocol for the kidney with an early fixation step that greatly enhances the yield of single cells. Genetic labeling of the proximal tubule with either mT/mG "tomato" or R26Fucci2aR (Fucci) cell cycle reporter mice allows us to follow proximal tubule-specific changes in cell cycle after renal injury. Image-based flow cytometry (FlowSight) enables gating of the cell cycle and concurrent visualization of the cells with bright field and fluorescence. We used the Fucci mouse in conjunction with FlowSight to identify a discrete polyploid population in proximal tubules after aristolochic acid injury. The tissue dissociation protocol in conjunction with genetic labeling and image-based flow cytometry is a tool that can improve our understanding of any discrete cell population after injury.


Asunto(s)
Lesión Renal Aguda/patología , Ciclo Celular , Separación Celular/métodos , Células Epiteliales/patología , Citometría de Flujo , Túbulos Renales Proximales/patología , Fijación del Tejido/métodos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Ácidos Aristolóquicos , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Genes Reporteros , Túbulos Renales Proximales/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Transgénicos , Poliploidía
3.
J Am Soc Nephrol ; 28(12): 3490-3503, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28701516

RESUMEN

The TGF-ß and Wnt/ß-catenin pathways have important roles in modulating CKD, but how these growth factors affect the epithelial response to CKD is not well studied. TGF-ß has strong profibrotic effects, but this pleiotropic factor has many different cellular effects depending on the target cell type. To investigate how TGF-ß signaling in the proximal tubule, a key target and mediator of CKD, alters the response to CKD, we injured mice lacking the TGF-ß type 2 receptor specifically in this epithelial segment. Compared with littermate controls, mice lacking the proximal tubular TGF-ß receptor had significantly increased tubular injury and tubulointerstitial fibrosis in two different models of CKD. RNA sequencing indicated that deleting the TGF-ß receptor in proximal tubule cells modulated many growth factor pathways, but Wnt/ß-catenin signaling was the pathway most affected. We validated that deleting the proximal tubular TGF-ß receptor impaired ß-catenin activity in vitro and in vivo Genetically restoring ß-catenin activity in proximal tubules lacking the TGF-ß receptor dramatically improved the tubular response to CKD in mice. Deleting the TGF-ß receptor alters many growth factors, and therefore, this ameliorated response may be a direct effect of ß-catenin activity or an indirect effect of ß-catenin interacting with other growth factors. In conclusion, blocking TGF-ß and ß-catenin crosstalk in proximal tubules exacerbates tubular injury in two models of CKD.


Asunto(s)
Fallo Renal Crónico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Animales , Ácidos Aristolóquicos/química , Núcleo Celular/metabolismo , Colágeno/química , Cruzamientos Genéticos , Epitelio/metabolismo , Femenino , Eliminación de Gen , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inhibidores
4.
PLoS One ; 5(5): e10504, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20498699

RESUMEN

BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6) times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Insulina/metabolismo , Insulisina/antagonistas & inhibidores , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Células HeLa , Humanos , Insulisina/química , Modelos Moleculares , Biblioteca de Péptidos , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
J Mol Biol ; 395(2): 430-43, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19896952

RESUMEN

Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-beta, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-alpha (TGF-alpha) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-alpha, amylin, reduced amylin, and amyloid-beta by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-alpha at 2.3 A and IDE-amylin at 2.9 A. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.


Asunto(s)
Amiloide/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Insulisina/química , Insulisina/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Amiloide/genética , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Insulina/química , Insulina/genética , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Insulisina/genética , Polipéptido Amiloide de los Islotes Pancreáticos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electricidad Estática , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador alfa/química
6.
J Biol Chem ; 284(21): 14177-88, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19321446

RESUMEN

Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.


Asunto(s)
Biocatálisis , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Cisteína , Humanos , Insulisina/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Biochemistry ; 47(48): 12822-34, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-18986166

RESUMEN

Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.


Asunto(s)
Cisteína/metabolismo , Insulisina/química , Insulisina/metabolismo , Péptidos/química , Péptidos/metabolismo , Alquilación , Sustitución de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Humanos , Insulisina/antagonistas & inhibidores , Insulisina/genética , Calidina/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Compuestos de Sulfhidrilo/metabolismo
8.
J Biol Chem ; 282(35): 25453-63, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17613531

RESUMEN

Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid-beta (Abeta) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substrate-bound human 113-kDa IDE reveals that the N- and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that Abeta is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in Vmax with only minimal changes to Km. Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.


Asunto(s)
Adenosina Trifosfato/química , Insulisina/química , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/enzimología , Sustitución de Aminoácidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Diabetes Mellitus/enzimología , Humanos , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Cinética , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA