Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11054, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744976

RESUMEN

Brain machine interfaces (BMIs) can substantially improve the quality of life of elderly or disabled people. However, performing complex action sequences with a BMI system is onerous because it requires issuing commands sequentially. Fundamentally different from this, we have designed a BMI system that reads out mental planning activity and issues commands in a proactive manner. To demonstrate this, we recorded brain activity from freely-moving monkeys performing an instructed task and decoded it with an energy-efficient, small and mobile field-programmable gate array hardware decoder triggering real-time action execution on smart devices. Core of this is an adaptive decoding algorithm that can compensate for the day-by-day neuronal signal fluctuations with minimal re-calibration effort. We show that open-loop planning-ahead control is possible using signals from primary and pre-motor areas leading to significant time-gain in the execution of action sequences. This novel approach provides, thus, a stepping stone towards improved and more humane control of different smart environments with mobile brain machine interfaces.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Animales , Encéfalo/fisiología , Macaca mulatta
3.
IEEE Trans Cybern ; 54(4): 2062-2075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37028343

RESUMEN

Dung beetles can effectively transport dung pallets of various sizes in any direction across uneven terrain. While this impressive ability can inspire new locomotion and object transportation solutions in multilegged (insect-like) robots, to date, most existing robots use their legs primarily to perform locomotion. Only a few robots can use their legs to achieve both locomotion and object transportation, although they are limited to specific object types/sizes (10%-65% of leg length) on flat terrain. Accordingly, we proposed a novel integrated neural control approach that, like dung beetles, pushes state-of-the-art insect-like robots beyond their current limits toward versatile locomotion and object transportation with different object types/sizes and terrains (flat and uneven). The control method is synthesized based on modular neural mechanisms, integrating central pattern generator (CPG)-based control, adaptive local leg control, descending modulation control, and object manipulation control. We also introduced an object transportation strategy combining walking and periodic hind leg lifting for soft object transportation. We validated our method on a dung beetle-like robot. Our results show that the robot can perform versatile locomotion and use its legs to transport hard and soft objects of various sizes (60%-70% of leg length) and weights (approximately 3%-115% of robot weight) on flat and uneven terrains. The study also suggests possible neural control mechanisms underlying the dung beetle Scarabaeus galenus' versatile locomotion and small dung pallet transportation.


Asunto(s)
Escarabajos , Robótica , Animales , Robótica/métodos , Locomoción , Caminata
4.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018408

RESUMEN

The most effective way to avoid intense inter- and intra-specific competition at the dung source, and to increase the distance to the other competitors, is to follow a single straight bearing. While ball-rolling dung beetles manage to roll their dung balls along nearly perfect straight paths when traversing flat terrain, the paths that they take when traversing more complex (natural) terrain are not well understood. In this study, we investigate the effect of complex surface topographies on the ball-rolling ability of Kheper lamarcki. Our results reveal that ball-rolling trajectories are strongly influenced by the characteristic scale of the surface structure. Surfaces with an increasing similarity between the average distance of elevations and the ball radius cause progressively more difficulties during ball transportation. The most important factor causing difficulties in ball transportation appears to be the slope of the substrate. Our results show that, on surfaces with a slope of 7.5 deg, more than 60% of the dung beetles lose control of their ball. Although dung beetles still successfully roll their dung ball against the slope on such inclinations, their ability to roll the dung ball sideways diminishes. However, dung beetles do not seem to adapt their path on inclines such that they roll their ball in the direction against the slope. We conclude that dung beetles strive for a straight trajectory away from the dung pile, and that their actual path is the result of adaptations to particular surface topographies.


Asunto(s)
Conducta Animal , Escarabajos , Animales , Señales (Psicología) , Heces , Extremidad Superior
5.
Front Neurorobot ; 17: 1214248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023449

RESUMEN

Introduction: Millipedes can avoid obstacle while navigating complex environments with their multi-segmented body. Biological evidence indicates that when the millipede navigates around an obstacle, it first bends the anterior segments of its corresponding anterior segment of its body, and then gradually propagates this body bending mechanism from anterior to posterior segments. Simultaneously, the stride length between pairs of legs inside the bending curve decreases to coordinate the leg motions with the bending mechanism of the body segments. In robotics, coordination between multiple legs and body segments during turning for navigating in complex environments, e.g., narrow spaces, has not been fully realized in multi-segmented, multi-legged robots with more than six legs. Method: To generate the efficient obstacle avoidance turning behavior in a multi-segmented, multi-legged (millipede-like) robot, this study explored three possible strategies of leg and body coordination during turning: including the local leg and body coordination at the segment level in a manner similar to millipedes, global leg amplitude change in response to different turning directions (like insects), and the phase reversal of legs inside of turning curve during obstacle avoidance (typical engineering approach). Results: Using sensory inputs obtained from the antennae located at the robot head and recurrent neural control, different turning strategies were generated, with gradual body bending propagation from the anterior to posterior body segments. Discussion: We discovered differences in the performance of each turning strategy, which could guide the future control development of multi-segmented, legged robots.

6.
Neural Netw ; 167: 292-308, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666187

RESUMEN

Legged robots that can instantly change motor patterns at different walking speeds are useful and can accomplish various tasks efficiently. However, state-of-the-art control methods either are difficult to develop or require long training times. In this study, we present a comprehensible neural control framework to integrate probability-based black-box optimization (PIBB) and supervised learning for robot motor pattern generation at various walking speeds. The control framework structure is based on a combination of a central pattern generator (CPG), a radial basis function (RBF) -based premotor network and a hypernetwork, resulting in a so-called neural CPG-RBF-hyper control network. First, the CPG-driven RBF network, acting as a complex motor pattern generator, was trained to learn policies (multiple motor patterns) for different speeds using PIBB. We also introduce an incremental learning strategy to avoid local optima. Second, the hypernetwork, which acts as a task/behavior to control parameter mapping, was trained using supervised learning. It creates a mapping between the internal CPG frequency (reflecting the walking speed) and motor behavior. This map represents the prior knowledge of the robot, which contains the optimal motor joint patterns at various CPG frequencies. Finally, when a user-defined robot walking frequency or speed is provided, the hypernetwork generates the corresponding policy for the CPG-RBF network. The result is a versatile locomotion controller which enables a quadruped robot to perform stable and robust walking at different speeds without sensory feedback. The policy of the controller was trained in the simulation (less than 1 h) and capable of transferring to a real robot. The generalization ability of the controller was demonstrated by testing the CPG frequencies that were not encountered during training.


Asunto(s)
Robótica , Robótica/métodos , Velocidad al Caminar , Redes Neurales de la Computación , Caminata , Locomoción
7.
Front Neural Circuits ; 17: 1111285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063383

RESUMEN

Introduction: Animals such as cattle can achieve versatile and elegant behaviors through automatic sensorimotor coordination. Their self-organized movements convey an impression of adaptability, robustness, and motor memory. However, the adaptive mechanisms underlying such natural abilities of these animals have not been completely realized in artificial legged systems. Methods: Hence, we propose adaptive neural control that can mimic these abilities through adaptive physical and neural communications. The control algorithm consists of distributed local central pattern generator (CPG)-based neural circuits for generating basic leg movements, an adaptive sensory feedback mechanism for generating self-organized phase relationships among the local CPG circuits, and an adaptive neural coupling mechanism for transferring and storing the formed phase relationships (a gait pattern) into the neural structure. The adaptive neural control was evaluated in experiments using a quadruped robot. Results: The adaptive neural control enabled the robot to 1) rapidly and automatically form its gait (i.e., self-organized locomotion) within a few seconds, 2) memorize the gait for later recovery, and 3) robustly walk, even when a sensory feedback malfunction occurs. It also enabled maneuverability, with the robot being able to change its walking speed and direction. Moreover, implementing adaptive physical and neural communications provided an opportunity for understanding the mechanism of motor memory formation. Discussion: Overall, this study demonstrates that the integration of the two forms of communications through adaptive neural control is a powerful way to achieve robust and reusable self-organized locomotion in legged robots.


Asunto(s)
Robótica , Animales , Bovinos , Locomoción , Caminata , Marcha , Algoritmos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37027271

RESUMEN

Gait synchronization has attracted significant attention in research on assistive lower-limb exoskeletons because it can circumvent conflicting movements and improve the assistance performance. This study proposes an adaptive modular neural control (AMNC) for online gait synchronization and the adaptation of a lower-limb exoskeleton. The AMNC comprises several distributed and interpretable neural modules that interact with each other to effectively exploit neural dynamics and adopt feedback signals to quickly reduce the tracking error, thereby smoothly synchronizing the exoskeleton movement with the user's movement on the fly. Taking state-of-the-art control as the benchmark, the proposed AMNC provides further improvements in the locomotion phase, frequency, and shape adaptation. Accordingly, under the physical interaction between the user and the exoskeleton, the control can reduce the optimized tracking error and unseen interaction torque by up to 80% and 30%, respectively. Accordingly, this study contributes to the advancement of exoskeleton and wearable robotics research in gait assistance for the next generation of personalized healthcare.

9.
Cyborg Bionic Syst ; 4: 0008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040511

RESUMEN

Climbing behavior is a superior motion skill that animals have evolved to obtain a more beneficial position in complex natural environments. Compared to animals, current bionic climbing robots are less agile, stable, and energy-efficient. Further, they locomote at a low speed and have poor adaptation to the substrate. One of the key elements that can improve their locomotion efficiency is the active and flexible feet or toes observed in climbing animals. Inspired by the active attachment-detachment behavior of geckos, a hybrid pneumatic-electric-driven climbing robot with active attachment-detachment bionic flexible feet (toes) was developed. Although the introduction of bionic flexible toes can effectively improve the robot's adaptability to the environment, it also poses control challenges, specifically, the realization of attachment-detachment behavior by the mechanics of the feet, the realization of hybrid drive control with different response characteristics, and the interlimb collaboration and limb-foot coordination with a hysteresis effect. Through the analysis of geckos' limbs and foot kinematic behavior during climbing, rhythmic attachment-detachment strategies and coordination behavior between toes and limbs at different inclines were identified. To enable the robot to achieve similar foot attachment-detachment behavior for climbing ability enhancement, we propose a modular neural control framework comprising a central pattern generator module, a post-processing central pattern generation module, a hysteresis delay line module, and an actuator signal conditioning module. Among them, the hysteresis adaptation module helps the bionic flexible toes to achieve variable phase relationships with the motorized joint, thus enabling proper limb-to-foot coordination and interlimb collaboration. The experiments demonstrated that the robot with neural control achieved proper coordination, resulting in a foot with a 285% larger adhesion area than that of a conventional algorithm. In addition, in the plane/arc climbing scenario, the robot with coordination behavior increased by as much as 150%, compared to the incoordinated one owing to its higher adhesion reliability.

11.
Bioinspir Biomim ; 18(3)2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36881919

RESUMEN

Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research.


Asunto(s)
Biomimética , Invertebrados , Modelos Neurológicos , Robótica , Animales , Humanos , Biomimética/métodos , Biomimética/tendencias , Insectos/anatomía & histología , Insectos/fisiología , Invertebrados/anatomía & histología , Invertebrados/fisiología , Movimiento (Física) , Neurociencias/tendencias , Reproducibilidad de los Resultados , Robótica/instrumentación , Robótica/métodos , Robótica/tendencias
12.
Soft Robot ; 10(3): 545-555, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36459126

RESUMEN

Crawling animals with bendable soft bodies use the friction anisotropy of their asymmetric body structures to traverse various substrates efficiently. Although the effect of friction anisotropy has been investigated and applied to robot locomotion, the dynamic interactions between soft body bending at different frequencies (low and high), soft asymmetric surface structures at various aspect ratios (low, medium, and high), and different substrates (rough and smooth) have not been studied comprehensively. To address this lack, we developed a simple soft robot model with a bioinspired asymmetric structure (sawtooth) facing the ground. The robot uses only a single source of pressure for its pneumatic actuation. The frequency, teeth aspect ratio, and substrate parameters and the corresponding dynamic interactions were systematically investigated and analyzed. The study findings indicate that the anterior and posterior parts of the structure deform differently during the interaction, generating different frictional forces. In addition, these parts switched their roles dynamically from push to pull and vice versa in various states, resulting in the robot's emergent locomotion. Finally, autonomous adaptive crawling behavior of the robot was demonstrated using sensor-driven neural control with a miniature laser sensor installed in the anterior part of the robot. The robot successfully adapted its actuation frequency to reduce body bending and crawl through a narrow space, such as a tunnel. The study serves as a stepping stone for developing simple soft crawling robots capable of navigating cluttered and confined spaces autonomously.


Asunto(s)
Robótica , Animales , Fricción , Anisotropía , Locomoción
13.
Front Bioeng Biotechnol ; 10: 900389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910016

RESUMEN

Geckos use millions of dry bristles on their toes to adhere to and rapidly run up walls and across ceilings. This has inspired the successful development of dry adhesive materials and their application to climbing robots. The tails of geckos also help realize adaptive and robust climbing behavior. Existing climbing robots with gecko-inspired tails have demonstrated improved locomotion performance. However, few studies have focused on the role of a robot's gecko-inspired tail when climbing a sloped surface and its effects on the overall locomotion performance. Thus, this paper reviews and analyzes the roles of the tails of geckos and robots in terms of their climbing performances and compares the advantages and disadvantages of robots' tails made of rigid and soft materials. This review could assist roboticists decide whether a tail is required for their robots and which materials and motion types to use for the tail in order to fulfill their desired functions and even allow the robots to adapt to different environments and tasks.

14.
Front Neural Circuits ; 16: 839361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547643

RESUMEN

Unmanned aerial vehicles (UAVs) are involved in critical tasks such as inspection and exploration. Thus, they have to perform several intelligent functions. Various control approaches have been proposed to implement these functions. Most classical UAV control approaches, such as model predictive control, require a dynamic model to determine the optimal control parameters. Other control approaches use machine learning techniques that require multiple learning trials to obtain the proper control parameters. All these approaches are computationally expensive. Our goal is to develop an efficient control system for UAVs that does not require a dynamic model and allows them to learn control parameters online with only a few trials and inexpensive computations. To achieve this, we developed a neural control method with fast online learning. Neural control is based on a three-neuron network, whereas the online learning algorithm is derived from a neural correlation-based learning principle with predictive and reflexive sensory information. This neural control technique is used here for the speed adaptation of the UAV. The control technique relies on a simple input signal from a compact optical distance measurement sensor that can be converted into predictive and reflexive sensory information for the learning algorithm. Such speed adaptation is a fundamental function that can be used as part of other complex control functions, such as obstacle avoidance. The proposed technique was implemented on a real UAV system. Consequently, the UAV can quickly learn within 3-4 trials to proactively adapt its flying speed to brake at a safe distance from the obstacle or target in the horizontal and vertical planes. This speed adaptation is also robust against wind perturbation. We also demonstrated a combination of speed adaptation and obstacle avoidance for UAV navigations, which is an important intelligent function toward inspection and exploration.


Asunto(s)
Educación a Distancia , Dispositivos Aéreos No Tripulados , Algoritmos , Aprendizaje Automático , Viento
15.
16.
Front Bioeng Biotechnol ; 10: 842816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252150

RESUMEN

Feet play an important role in the adaptive, versatile, and stable locomotion of legged creatures. Accordingly, several robotic research studies have used biological feet as the inspiration for the design of robot feet in traversing complex terrains. However, so far, no robot feet can allow legged robots to adaptively, versatilely, and robustly crawl on various curved metal pipes, including flat surfaces for pipe inspection. To address this issue, we propose here a novel hybrid rigid-soft robot-foot design inspired by the leg morphology of an inchworm. The foot consists of a rigid section with an electromagnet and a soft toe covering for enhanced adhesion to a metal pipe. Finite element analysis , performed under different loading conditions, reveals that due to its compliance, the soft toe can undergo recoverable deformation with adaptability to various curved metal pipes and plain metal surfaces. We have successfully implemented electromagnetic feet with soft toes (EROFT) on an inchworm-inspired pipe crawling robot for adaptive, versatile, and stable locomotion. Foot-to-surface adaptability is provided by the inherent elasticity of the soft toe, making the robot a versatile and stable metal pipe crawler. Experiments show that the robot crawling success rate reaches 100% on large diameter metal pipes. The proposed hybrid rigid-soft feet (i.e., electromagnetic feet with soft toes) can solve the problem of continuous surface adaptation for the robot in a stable and efficient manner, irrespective of the surface curvature, without the need to manually change the robot feet for specific surfaces. To this end, the foot development enables the robot to meet a set of deployment requirements on large oil and gas pipelines for potential use in inspecting various faults and leakages.

17.
Bioinspir Biomim ; 17(3)2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35236786

RESUMEN

Today's gecko-inspired robots have shown the ability of omnidirectional climbing on slopes with a low centre of mass. However, such an ability cannot efficiently cope with bumpy terrains or terrains with obstacles. In this study, we developed a gecko-inspired robot (Nyxbot) with an adaptable body height to overcome this limitation. Based on an analysis of the skeletal system and kinematics of real geckos, the adhesive mechanism and leg structure design of the robot were designed to endow it with adhesion and adjustable body height capabilities. Neural control with exteroceptive sensory feedback is utilised to realise body height adaptability while climbing on a slope. The locomotion performance and body adaptability of the robot were tested by conducting slope climbing and obstacle crossing experiments. The gecko robot can climb a 30° slope with spontaneous obstacle crossing (maximum obstacle height of 38% of the body height) and can climb even steeper slopes (up to 60°) without an obstacle or bump. Using 3D force measuring platforms for ground reaction force analysis of geckos and the robot, we show that the motions of the developed robot driven by neural control and the motions of geckos are dynamically comparable. To this end, this study provides a basis for developing climbing robots with adaptive bump/obstacle crossing on slopes towards more agile and versatile gecko-like locomotion.


Asunto(s)
Lagartos , Robótica , Animales , Fenómenos Biomecánicos , Locomoción , Movimiento (Física)
18.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1833-1845, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34669583

RESUMEN

Walking animals can continuously adapt their locomotion to deal with unpredictable changing environments. They can also take proactive steps to avoid colliding with an obstacle. In this study, we aim to realize such features for autonomous walking robots so that they can efficiently traverse complex terrains. To achieve this, we propose novel bioinspired adaptive neuroendocrine control. In contrast to conventional locomotion control methods, this approach does not require robot and environmental models, exteroceptive feedback, or multiple learning trials. It integrates three main modular neural mechanisms, relying only on proprioceptive feedback and short-term memory, namely: 1) neural central pattern generator (CPG)-based control; 2) an artificial hormone network (AHN); and 3) unsupervised input correlation-based learning (ICO). The neural CPG-based control creates insect-like gaits, while the AHN can continuously adapt robot joint movement individually with respect to the terrain during the stance phase using only the torque feedback. In parallel, the ICO generates short-term memory for proactive obstacle negotiation during the swing phase, allowing the posterior legs to step over the obstacle before hitting it. The control approach is evaluated on a bioinspired hexapod robot walking on complex unpredictable terrains (e.g., gravel, grass, and extreme random stepfield). The results show that the robot can successfully perform energy-efficient autonomous locomotion and online continuous adaptation with proactivity to overcome such terrains. Since our adaptive neural control approach does not require a robot model, it is general and can be applied to other bioinspired walking robots to achieve a similar adaptive, autonomous, and versatile function.


Asunto(s)
Robótica , Adaptación Fisiológica , Animales , Locomoción , Redes Neurales de la Computación , Robótica/métodos , Caminata
19.
IEEE Trans Cybern ; 52(12): 12893-12904, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34264833

RESUMEN

Bayesian filters have been considered to help refine and develop theoretical views on spatial cell functions for self-localization. However, extending a Bayesian filter to reproduce insect-like navigation behaviors (e.g., home searching) remains an open and challenging problem. To address this problem, we propose an embodied neural controller for self-localization, foraging, backward homing (BH), and home searching of an advanced mobility sensor (AMOS)-driven insect-like robot. The controller, comprising a navigation module for the Bayesian self-localization and goal-directed control of AMOS and a locomotion module for coordinating the 18 joints of AMOS, leads to its robust insect-like navigation behaviors. As a result, the proposed controller enables AMOS to perform robust foraging, BH, and home searching against various levels of sensory noise, compared to conventional controllers. Its implementation relies only on self-localization and heading perception, rather than global positioning and landmark guidance. Interestingly, the proposed controller makes AMOS achieve spiral searching patterns comparable to those performed by real insects. We also demonstrated the performance of the controller for real-time indoor and outdoor navigation in a real insect-like robot without any landmark and cognitive map.


Asunto(s)
Insectos , Locomoción , Animales , Teorema de Bayes , Insectos/fisiología , Locomoción/fisiología
20.
IEEE Trans Cybern ; 52(6): 4495-4507, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33170791

RESUMEN

While nonlinear oscillators have been widely used for central pattern generators to produce basic rhythmic signals for robot locomotion control, methods to shape and regulate the signal waveform without changing the characteristics of the oscillators have not been fully investigated, especially during the network synchronization process. To illustrate the principle and process of waveform regulation of nonlinear oscillators in detail and ensure that the influence can be controlled, we present a method for waveform regulation and synchronization and analyze the relationship of different factors (e.g., initial conditions, network parameters, phase, and waveform regulation factors) in synchronization deviation. Then, the method is indicated to be effective in other commonly used nonlinear oscillators and neural oscillators. As an example application, a three-layer behavioral control architecture for a legged robot is constructed based on the proposed method. Modules for the body behavior, leg coordination, and single-leg adjustment are established to realize diverse robot behaviors. The effectiveness of the method is validated by a series of experiments. The results prove that the method performs well in terms of signal control accuracy, behavior pattern diversity, and smooth motion transition.


Asunto(s)
Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...