Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PLoS One ; 18(1): e0279745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662731

RESUMEN

Silver-Russell syndrome (SRS) is a rare imprinting disorder characterized by prenatal and postnatal growth retardation. The two principal causes of SRS are loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (UPD(7)mat). Knowledge of the neuropsychological profile of SRS remains sparse and incomplete even if several difficulties related to attention and learning have been reported both in the literature and by patients with SRS. These difficulties could be the result of troubles in different cognitive domains, but also of executive dysfunction. Nevertheless, executive functioning has never been investigated, even though executive functions play an essential role in psychological development, and are extensively involved in daily life. The present study explored the executive functioning of individuals with SRS due to UPD(7)mat or 11p15 LOM. A battery of executive tasks assessing cognitive flexibility, inhibitory control, and working memory, together with a task assessing sustained attention, was administered to 19 individuals with SRS (13-39 years) and 19 healthy controls. The Behavior Rating Inventory of Executive Function was also completed by the participants' families. The results showed that participants with SRS had similar performance (z-scores) to our controls, in a context of normal intellectual efficiency. Group comparisons with Bayesian statistics showed a single difference between the 11p15 LOM and control groups: the completion time for part A of the Trail Making Test appeared to be longer in the 11p15 LOM group than in the control group. However, at the clinical level, several participants with SRS had clinically significant scores on various measures of EFs. Thus, the cognitive phenotype of SRS did not appear to be characterized by executive dysfunction, but individuals with SRS could be at high risk of developing executive dysfunction or attention-deficit/hyperactivity disorder. These results provide new insights into the neuropsychological profile of individuals with SRS.


Asunto(s)
Síndrome de Silver-Russell , Femenino , Embarazo , Humanos , Síndrome de Silver-Russell/genética , Función Ejecutiva , Teorema de Bayes , Metilación , Disomía Uniparental , Metilación de ADN , Impresión Genómica , Fenotipo
2.
Eur J Med Genet ; 65(11): 104603, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049610

RESUMEN

TRIT1 encodes a tRNA isopentenyl transferase that allows a strong interaction between the mini helix and the codon. Recent reports support the TRIT1 bi-allelic alterations as the cause of an autosomal recessive disorder, named combined oxydative phophorylation deficiency 35, with microcephaly, developmental disability, and epilepsy. The phenotype is due to decreased mitochondrial function, with deficit of i6A37 in cytosolic and mitochondrial tRNA. Only 10 patients have been reported. We report on two new patients with four novel variants, and confirm the published clinical TRIT1 deficient phenotype stressing the possibility of both very severe, with generalized pharmaco-resistant seizures, and mild phenotypes.


Asunto(s)
Transferasas Alquil y Aril , Microcefalia , Humanos , Transferasas Alquil y Aril/genética , Alelos , Codón , Microcefalia/genética , Mitocondrias/genética , Fenotipo , ARN de Transferencia
3.
Genet Med ; 24(8): 1708-1721, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583550

RESUMEN

PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.


Asunto(s)
Displasia Ectodérmica , Factor de Unión 1 al Potenciador Linfoide/genética , Vía de Señalización Wnt , Consanguinidad , Displasia Ectodérmica/genética , Humanos , Deformidades Congénitas de las Extremidades , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Síndrome , beta Catenina/genética , beta Catenina/metabolismo
4.
Eur J Med Genet ; 65(5): 104482, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35304302

RESUMEN

Silver-Russell syndrome (SRS) is a rare imprinting disorder characterized by prenatal and postnatal growth retardation. Despite normal intellectual functioning, psychosocial and behavioral difficulties have been observed in this syndrome. However, few studies have dealt with these aspects, even though this could enhance the current understanding of the SRS and, more importantly, improve the management of potential psychosocial problems. Given the sparse literature, this cross-sectional study aimed to establish the psychosocial and behavioral profile of individuals with SRS. To this end, we assessed the quality of life (World Health Organization Quality of Life Questionnaire-Short Form), self-esteem (Coopersmith's Self-Esteem Inventory), anxiety (Spielberger's State-Trait Anxiety Inventory), and behavioral and emotional problems (Child Behavior Checklist and Adult Behavior Checklist) in a sample of 19 adolescents and adults with SRS and 18 without SRS (controls). We also analyzed clinical features, molecular genetic diagnosis, and past or current treatments of participants with SRS. Based on prior studies, we expected to observe psychological and behavioral difficulties in our clinical population. We also expected these difficulties, shared by both adolescents and adults with SRS, to be associated with factors such as height, genetics, or treatment. Overall, our results showed that participants with SRS had similar performances to those of controls, despite high interindividual variability among the adults with SRS. For example, while adults with SRS had a similar mean total self-esteem score to control participants, 45% of the adults with SRS still had very low self-esteem. In addition, adolescents and adults with SRS did not necessarily have the same difficulties. Social and behavioral problems appeared to be more common in adolescents with upd(7)mat while in adults, difficulties were not associated with either height, weight, NH-CSS score, or GH treatment but did appear to be associated with GnRHa treatment. Indeed, low self-esteem was associated with GnRHa treatment. Overall, this study shows that early intervention and multidisciplinary care right up to adulthood, including psychological support, are needed for this population, regardless of the molecular abnormality responsible for SRS, to cope with potential psychosocial problems.


Asunto(s)
Calidad de Vida , Síndrome de Silver-Russell , Adaptación Psicológica , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Salud Mental , Embarazo , Síndrome de Silver-Russell/genética
5.
Eur J Med Genet ; 65(1): 104398, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34798324

RESUMEN

MED13L syndrome is a rare congenital disorder comprising moderate intellectual disability, hypotonia and facial dysmorphism. Whole exome or genome sequencing in patients with non-specific neurodevelopmental disorders leads to identification of an increasing number of MED13L missense variations of unknown signification. The aim of our study was to identify relevant annotation parameters enhancing discrimination between candidate pathogenic or neutral missense variations, and to assess the performance of seven meta-predictor algorithms: BayesDel, CADD, DANN, FATHMM-XF, M-CAP, MISTIC and REVEL for the classification of MED13L missense variants. Significant differences were identified for five parameters: global conservation through verPhyloP and verPhCons scores; physico-chemical difference between amino acids estimated by Grantham scores; conservation of residues between MED13L and MED13 protein; proximity to phosphorylation sites for pathogenic variations. Among the seven selected in-silico tools, BayesDel, REVEL, and MISTIC provided the most interesting performances to discriminate pathogenic from neutral missense variations. Individual gene parameter studies with MED13L have provided expertise on elements of annotation improving meta-predictor choices. The in-silico approach allows us to make valuable hypotheses to predict the involvement of these amino acids in MED13L pathogenic missense variations.


Asunto(s)
Complejo Mediador/genética , Algoritmos , Humanos , Mutación Missense
6.
Nat Commun ; 12(1): 5533, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545091

RESUMEN

LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis.


Asunto(s)
Extremidades/fisiopatología , Proteínas con Homeodominio LIM/metabolismo , Síndrome de la Uña-Rótula/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Pollos , Cromatina/metabolismo , Femenino , Eliminación de Gen , Genes Reporteros , Homocigoto , Humanos , Masculino , Ratones , Especificidad de Órganos , Linaje , Fenotipo
7.
Disabil Rehabil ; 43(16): 2304-2311, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31786957

RESUMEN

BACKGROUND: Holt-Oram syndrome (HOS) is a rare genetic disease characterized by variable radial upper limb and cardiac defects. The aim of this research was to shed light on people's subjective perceptions of their diseases, how these perceptions provide meaning, and the consequences the syndrome can have in daily life and across all life stages. METHODS: Semistructured interviews with ten participants diagnosed with HOS were conducted in France and analyzed using interpretative phenomenological analysis. RESULTS: Participants' experiences fall under two main themes, namely, "stages of self-construction as different" and "when I am no longer the only one involved", each of which has three subthemes. From childhood onwards, symptoms monopolize the physical and psychological spheres. The feeling of being different is unavoidable until the patient can appropriate his or her condition, and by the end of adolescence, the patient generally feels that he or she has adapted to the syndrome. In adulthood, other concerns arise, such as the fear of rejection, the need to better understand the genetic issues of the condition and the desire for offspring to not experience the same life difficulties. CONCLUSION: The findings underscore the specific psychological issues associated with the syndrome at different life stages and the need for holistic genetic treatment with dedicated reference centers to improve care and further address these issues.IMPLICATIONS FOR REHABILITATIONHolt-Oram syndrome is a genetic disease characterized by abnormalities of the upper limbs and shoulder girdle and associated with a congenital heart defect.Specific issues arise at different stages of life: the physical consequences of the syndrome arise during childhood, the self-construction of pervasive difference during adolescence, the fear of being rejected as a young adult, and concerns about future parenthood and the transmission of the syndrome and the desire that one's child not be confronted with the same difficulties in adulthood.The complexity and entanglement of medical and existential issues related to HOS requires the development of multidisciplinary consultations that promote holistic care.The rarity of the syndrome and the lack of knowledge about HOS among health professionals and the general public make it necessary both to establish reference centers and to create patient associations to support patients.


Asunto(s)
Cardiopatías Congénitas , Defectos del Tabique Interatrial , Deformidades Congénitas de las Extremidades Inferiores , Deformidades Congénitas de las Extremidades Superiores , Anomalías Múltiples , Adolescente , Adulto , Niño , Femenino , Cardiopatías Congénitas/genética , Humanos , Masculino , Deformidades Congénitas de las Extremidades Superiores/genética , Adulto Joven
8.
Clin Genet ; 99(4): 519-528, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368193

RESUMEN

Smith-Magenis syndrome (SMS), characterized by dysmorphic features, neurodevelopmental disorder, and sleep disturbance, is due to an interstitial deletion of chromosome 17p11.2 (90%) or to point mutations in the RAI1 gene. In this retrospective cohort, we studied the clinical, cognitive, and behavioral profile of 47 European patients with SMS caused by a 17p11.2 deletion. We update the clinical and neurobehavioral profile of SMS. Intrauterine growth was normal in most patients. Prenatal anomalies were reported in 15%. 60% of our patients older than 10 years were overweight. Prevalence of heart defects (6.5% tetralogy of Fallot, 6.5% pulmonary stenosis), ophthalmological problems (89%), scoliosis (43%), or deafness (32%) were consistent with previous reports. Epilepsy was uncommon (2%). We identified a high prevalence of obstipation (45%). All patients had learning difficulties and developmental delay, but ID range was wide and 10% of patients had IQ in the normal range. Behavioral problems included temper tantrums and other difficult behaviors (84%) and night-time awakenings (86%). Optimal care of SMS children is multidisciplinary and requires important parental involvement. In our series, half of patients were able to follow adapted schooling, but 70% of parents had to adapt their working time, illustrating the medical, social, educative, and familial impact of having a child with SMS.


Asunto(s)
Síndrome de Smith-Magenis/epidemiología , Anomalías Múltiples/genética , Adolescente , Niño , Trastornos de la Conducta Infantil/genética , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 17/ultraestructura , Discapacidades del Desarrollo/genética , Educación Especial , Relaciones Familiares , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Sobrepeso/genética , Padres , Aceptación de la Atención de Salud/estadística & datos numéricos , Fenotipo , Diagnóstico Prenatal , Estudios Retrospectivos , Trastornos del Sueño-Vigilia/genética , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/embriología , Síndrome de Smith-Magenis/psicología , Adulto Joven
9.
Eur J Med Genet ; 63(12): 104072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32987185

RESUMEN

SHANK2 code a scaffolding protein located at the postsynaptic membrane of glutamatergic neurons. To date, only nine patients were reported with a SHANK2-variation or microdeletion. Molecular anomalies were identified through screening of large cohorts of patients, but only poor patient clinical descriptions were available. However, this information is crucial for patient care. Here, we describe two additional unrelated patients carrying a SHANK2 de novo variant, improving the delineation of the condition. Phenotypic analysis of these 11 patients identified as major features of the condition: mild to moderate intellectual disability, speech delay, poor language skills, and autism spectrum disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Trastorno del Espectro Autista/patología , Niño , Discapacidades del Desarrollo/patología , Femenino , Humanos , Discapacidad Intelectual/patología , Desarrollo del Lenguaje , Masculino , Mutación
11.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227665

RESUMEN

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Proteínas de Unión al ARN/genética , Trombocitopenia/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Regiones no Traducidas 5' , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 1 , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Radio (Anatomía)/patología , Adulto Joven
12.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169219

RESUMEN

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Polidactilia/genética , Animales , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Sustitución del Gen/métodos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mutación , Fenotipo , Polidactilia/metabolismo , ARN no Traducido/genética
13.
Hum Mutat ; 41(1): 222-239, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31502745

RESUMEN

Congenital limb malformations (CLM) comprise many conditions affecting limbs and more than 150 associated genes have been reported. Due to this large heterogeneity, a high proportion of patients remains without a molecular diagnosis. In the last two decades, advances in high throughput sequencing have allowed new methodological strategies in clinical practice. Herein, we report the screening of 52 genes/regulatory sequences by multiplex high-throughput targeted sequencing, in a series of 352 patients affected with various CLM, over a 3-year period of time. Patients underwent a clinical triage by expert geneticists in CLM. A definitive diagnosis was achieved in 35.2% of patients, the yield varying considerably, depending on the phenotype. We identified 112 single nucleotide variants and 26 copy-number variations, of which 52 are novel pathogenic or likely pathogenic variants. In 6% of patients, variants of uncertain significance have been found in good candidate genes. We showed that multiplex targeted high-throughput sequencing works as an efficient and cost-effective tool in clinical practice for molecular diagnosis of congenital limb malformations. Careful clinical evaluation of patients may maximize the yield of CLM panel testing.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Alelos , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Mutación , Fenotipo , Radiografía , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Neurogenetics ; 21(1): 67-72, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31823155

RESUMEN

Microdeletions encompassing 14q11.2 locus, involving SUPT16H and CHD8, were shown to cause developmental delay, intellectual disability, autism spectrum disorders and macrocephaly. Variations leading to CHD8 haploinsufficiency or loss of function were also shown to lead to a similar phenotype. Recently, a 14q11.2 microduplication syndrome, encompassing CHD8 and SUPT16H, has been described, highlighting the importance of a tight control of at least CHD8 gene-dosage for a normal development. There have been only a few reports of 14q11.2 microduplications. Patients showed variable neurodevelopmental issues of variable severity. Breakpoints of the microduplications were non-recurrent, making interpretation of the CNV and determination of their clinical relevance difficult. Here, we report on two patients with 14q11.2 microduplication encompassing CHD8 and SUPT16H, one of whom had normal intelligence. Review of previous reports describing patients with comparable microduplications allowed for a more precise delineation of the condition and widening of the phenotypic spectrum.


Asunto(s)
Encéfalo/patología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Duplicación de Gen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Factores de Transcripción/genética , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Fenotipo
15.
Reprod Biomed Online ; 40(1): 151-159, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31831369

RESUMEN

RESEARCH QUESTION: Primary ovarian insufficiency (POI) is defined as the early exhaustion of ovarian function, before the age of 40 years. Its origin is genetic in 20-25% of cases. In rare cases, sequence variants of the NR5A1/SF-1 gene may result in POI, or in various disorders of gonadal development (DGD) or adrenal insufficiency. DESIGN: This study describes the cases of two families in which the association of DGD and POI enabled a diagnosis of NR5A1 deleterious variations. Their clinical, hormonal, ultrasound and genetic characteristics are reported. RESULTS: The mothers of the affected children were 21 and 29 years when POI was diagnosed. Each nonetheless had two spontaneous pregnancies. The children have different phenotypes and different forms of DGD. None of the affected family members had adrenal insufficiency. A new sequence variant of the NR5A1 gene was identified in one family: p.Cys283Phe (c.848G>T), and the NR5A1 sequence variant c.86G>C was found in the other family. CONCLUSION: Sequence variation of the NR5A1 gene is a possibility that must be considered when a woman with POI or a diminished ovarian reserve has a family member or child with DGD. If a variant is identified, genetic counselling is essential for the patient and his/her family.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Predisposición Genética a la Enfermedad , Fenotipo , Insuficiencia Ovárica Primaria/genética , Factor Esteroidogénico 1/genética , Adulto , Femenino , Humanos , Masculino , Mutación , Linaje , Adulto Joven
16.
Eur J Med Genet ; 63(4): 103812, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31731040

RESUMEN

Mayer-Rokitansky-Küster-Hauser syndrome (MRKH) is a rare malformative disorder, characterized by congenital aplasia of the uterus and the upper two thirds of the vagina (MIM #277000). For a majority of patients, the disorder remained without identified genetic cause. However, four recurrent microdeletions, i.e. 1q21.1-16p11.2-17q12 and 22q11.21, as well as variants in genes contained in these loci, have been identified in a small number of cases. We describe an additional patient with 2q12.1q14.1 microdeletion, showing MRKH and congenital hypothyroidism due to thyroid gland hypoplasia. The patient received a dual diagnosis with microdeletion of SHOX locus in addition to the 2q12.1q14.1 microdeletion. Literature review and database analysis has enabled us to identify 5 OMIM morbid genes: CKAP2L, IL1B, IL1RN, IL36RN and PAX8. Among these, PAX8 (Paired Box Gene 8), a transcriptional factor part of the paired-box family, plays a key role in the development of the thyroid gland, kidneys and Müllerian derivatives. We discuss here the role of PAX8 and speculate on the possible involvement of PAX8 in MRKH. In this study, we report a second case of 2q12.1q14.1 microdeletion, involving PAX8 as a gene associated with Müllerian agenesis in a MRKH I and hypothyroidism. Further studies will confirm the direct participation of PAX8 in gene target sequencing in a population of MRKH with hypothyroidism.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/genética , Cromosomas Humanos Par 2/genética , Anomalías Congénitas/genética , Hipotiroidismo/genética , Conductos Paramesonéfricos/anomalías , Factor de Transcripción PAX8/genética , Adolescente , Femenino , Humanos , Mutación
17.
J Genet Couns ; 28(5): 1011-1020, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31313463

RESUMEN

Nail-Patella syndrome (NPS) is a genetic disorder generating physical malformations and, in approximately one in three cases, ocular and renal damage. The present research aimed to deeply understand patients' subjective experience with NPS, particularly the aspects of the syndrome that affect patients' adaptation and to propose interventions that can improve genetic and psychological counseling and help patients cope with their condition. Semi-structured interviews of nine people diagnosed with NPS were analyzed using interpretative phenomenological analysis. Results highlighted attempts to look like a person without disabilities by hiding malformations and not telling the truth about symptoms' genetic origin because of patients' poor self-esteem, negative self-cognition, and social isolation experienced from childhood to adulthood. Difficulties of adaptation to physical limits and pain were also identified. The majority of participants who were not diagnosed at birth tended to consider physical symptoms as "birth malformations" without imagining other potential implications until receiving a diagnosis. Despite the diagnosis, the majority continued to minimize the potential complications by considering NPS as a "physical difference" and not adhering to medical surveillance.


Asunto(s)
Adaptación Psicológica , Síndrome de la Uña-Rótula/psicología , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Investigación Cualitativa , Adulto Joven
18.
Am J Med Genet A ; 179(7): 1351-1356, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050392

RESUMEN

Split-hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb malformation typically limited to a defect of the central rays of the autopod, presenting as a median cleft of hands and feet. It can be associated with long bone deficiency or included in more complex syndromes. Among the numerous genetic causes, WNT10B homozygous variants have been recently identified in consanguineous families, but remain still rarely described (SHFM6; MIM225300). We report on three novel SHFM families harboring WNT10B variants and review the literature, allowing us to highlight some clinical findings. The feet are more severely affected than the hands and there is a frequent asymmetry without obvious side-bias. Syndactyly of third-fourth fingers was a frequent finding (62%). Polydactyly, which was classically described in SHFM6, was only present in 27% of patients. No genotype-phenotype correlation is delineated but heterozygous individuals might have mild features of SHFM, suggesting a dose-effect of the WNT10B loss-of-function.


Asunto(s)
Deformidades Congénitas de las Extremidades/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Wnt/genética , Femenino , Humanos , Masculino , Linaje
19.
Eur J Hum Genet ; 27(4): 525-534, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622331

RESUMEN

Split-hand-split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.


Asunto(s)
Cromosomas Humanos Par 10/genética , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de las Extremidades/genética , Duplicaciones Segmentarias en el Genoma/genética , Adulto , Preescolar , Hibridación Genómica Comparativa/métodos , Proteínas F-Box/genética , Femenino , Reordenamiento Génico/genética , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/diagnóstico por imagen , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Lactante , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Linaje , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas/genética , Radiografía , Proteínas Wnt/genética , Adulto Joven
20.
Mol Psychiatry ; 24(11): 1748-1768, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29728705

RESUMEN

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Trastorno de la Conducta/genética , Femenino , Genes Ligados a X , Células HEK293 , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Persona de Mediana Edad , Mutación , Linaje , Factores de Transcripción/genética , Ubiquitinación , Inactivación del Cromosoma X , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...