Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 24(10): 2606-2613, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184496

RESUMEN

Ion channels control sperm navigation within the female reproductive tract and, thus, are critical for their ability to find and fertilize an egg. The flagellar calcium channel CatSper controls sperm hyperactivated motility and is dependent on an alkaline cytoplasmic pH. The latter is accomplished by either proton transporters or, in human sperm, via the voltage-gated proton channel Hv1. To provide concerted regulation, ion channels and their regulatory proteins must be compartmentalized. Here, we describe flagellar regulatory nanodomains comprised of Hv1, CatSper, and its regulatory protein ABHD2. Super-resolution microscopy revealed that Hv1 is distributed asymmetrically within bilateral longitudinal lines and that inhibition of this channel leads to a decrease in sperm rotation along the long axis. We suggest that specific distribution of flagellar nanodomains provides a structural basis for the selective activation of CatSper and subsequent flagellar rotation. The latter, together with hyperactivated motility, enhances the fertility of sperm.


Asunto(s)
Canales de Calcio/metabolismo , Flagelos/fisiología , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología , Canales de Calcio/genética , Electrofisiología , Flagelos/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Microscopía Electrónica , Motilidad Espermática/genética , Espermatozoides/ultraestructura
3.
PLoS One ; 11(11): e0165125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832085

RESUMEN

Sperm DNA fragmentation has been associated with reduced fertilization rates, embryo quality, pregnancy rates and increased miscarriage rates. Various methods exist to test sperm DNA fragmentation such as the sperm chromatin structure assay (SCSA), the sperm chromatin dispersion (SCD) test, the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay and the single cell gel electrophoresis (Comet) assay. We performed a systematic review and meta-analysis to assess the value of measuring sperm DNA fragmentation in predicting chance of ongoing pregnancy with IVF or ICSI. Out of 658 unique studies, 30 had extractable data and were thus included in the meta-analysis. Overall, the sperm DNA fragmentation tests had a reasonable to good sensitivity. A wide variety of other factors may also affect the IVF/ICSI outcome, reflected by limited to very low specificity. The constructed hierarchical summary receiver operating characteristic (HSROC) curve indicated a fair discriminatory capacity of the TUNEL assay (area under the curve (AUC) of 0.71; 95% CI 0.66 to 0.74) and Comet assay (AUC of 0.73; 95% CI 0.19 to 0.97). The SCSA and the SCD test had poor predictive capacity. Importantly, for the TUNEL assay, SCD test and Comet assay, meta-regression showed no differences in predictive value between IVF and ICSI. For the SCSA meta-regression indicated the predictive values for IVF and ICSI were different. The present review suggests that current sperm DNA fragmentation tests have limited capacity to predict the chance of pregnancy in the context of MAR. Furthermore, sperm DNA fragmentation tests have little or no difference in predictive value between IVF and ICSI. At this moment, there is insufficient evidence to recommend the routine use of sperm DNA fragmentation tests in couples undergoing MAR both for the prediction of pregnancy and for the choice of treatment. Given the significant limitations of the evidence and the methodological weakness and design of the included studies, we do urge for further research on the predictive value of sperm DNA fragmentation for the chance of pregnancy after MAR, also in comparison with other predictors of pregnancy after MAR.


Asunto(s)
Fragmentación del ADN , Fertilización In Vitro/métodos , Espermatozoides/metabolismo , Aborto Espontáneo/epidemiología , Cromatina/genética , Ensayo Cometa , Femenino , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Embarazo , Índice de Embarazo , Análisis de Semen , Espermatozoides/citología
4.
Hum Reprod ; 31(6): 1147-57, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27052499

RESUMEN

STUDY QUESTION: Are significant abnormalities in outward (K(+)) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER: Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY: Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K(+) channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K(+) channels in human spermatozoa or the incidence and functional consequences of K(+) channel defects. STUDY DESIGN, SIZE AND DURATION: Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca(2+) influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K(+) signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE: Patch clamp electrophysiology was used to assess outward (K(+)) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca(2+)]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION: For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS: These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. STUDY FUNDING/COMPETING INTERESTS: The majority of the data were obtained using funding from MRC project grants (#MR/K013343/1, MR/012492/1). Additional funding was provided by NHS Tayside, TENOVUS, Chief Scientist Office NRS Fellowship and University of Abertay. The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Asunto(s)
Infertilidad Masculina/genética , Potenciales de la Membrana/genética , Canales de Potasio/fisiología , Espermatozoides/química , Señalización del Calcio , Femenino , Fertilización/fisiología , Fertilización In Vitro , Humanos , Infertilidad Masculina/metabolismo , Masculino , Técnicas de Placa-Clamp , Canales de Potasio/genética , Canales de Potasio/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo
5.
Biol Reprod ; 93(6): 130, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26490839

RESUMEN

During transit through the female reproductive tract, mammalian spermatozoa are exposed to increasing concentrations of progesterone (P4) released by the cumulus oophorus. P4 triggers massive calcium influx into human sperm through activation of the sperm-specific calcium channel CatSper. These properties of human spermatozoa are thought to be unique since CatSper is not progesterone sensitive in rodent sperm. Here, by performing patch clamp recording from spermatozoa from rhesus macaque for the first time, we report that they express P4-sensitive CatSper channel identically to human sperm and react to P4 by inducing responsiveness to zona pellucida, unlike human sperm, which respond directly to P4. We have also determined the physiologic levels of P4 capable of inducing capacitation-associated changes in macaque sperm. Progesterone (1 µM) induced up to a 3-fold increase in the percentage of sperm undergoing the zona pellucida-induced acrosome reaction with the lowest threshold as low as 10 nM of P4. Submicromolar levels of P4 induced a dose-dependent increase in curvilinear velocity and lateral head displacement, while sperm protein tyrosine phosphorylation was not altered. Macaque spermatozoa exposed to 10 µM of P4 developed fully hyperactivated motility. Similar to human sperm, on approaching cumulus mass and binding to zona pellucida, macaque spermatozoa display hyperactivation and undergo an acrosome reaction that coincides with the rise in the sperm intracellular calcium. Taken together, these data indicate that P4 accelerates the completion of capacitation and provides evidence of spermatozoa "priming" as they move into a gradient of progesterone in search for the oocyte.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Progesterona/farmacología , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Macaca mulatta , Masculino , Fosforilación/efectos de los fármacos , Receptores Androgénicos/metabolismo , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo , Zona Pelúcida/efectos de los fármacos , Zona Pelúcida/metabolismo
6.
Hum Reprod ; 30(12): 2737-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453676

RESUMEN

STUDY QUESTION: Are significant abnormalities of CatSper function present in IVF patients with normal sperm concentration and motility and if so what is their functional significance for fertilization success? SUMMARY ANSWER: Sperm with a near absence of CatSper current failed to respond to activation of CatSper by progesterone and there was fertilization failure at IVF. WHAT IS KNOWN ALREADY: In human spermatozoa, Ca(2+) influx induced by progesterone is mediated by CatSper, a sperm-specific Ca(2+) channel. A suboptimal Ca(2+) influx is significantly associated with, and more prevalent in, men with abnormal semen parameters, and is associated with reduced fertilizing capacity. However, abnormalities in CatSper current can only be assessed directly using electrophysiology. There is only one report of a CatSper-deficient man who showed no progesterone potentiated CatSper current. A CatSper 2 genetic abnormality was present but there was no information on the [Ca(2+)]i response to CatSper activation by progesterone. Additionally, the semen samples had indicating significant abnormalities (oligoasthenoteratozoospermia) multiple suboptimal functional responses in the spermatozoon. As such it cannot be concluded that impaired CatSper function alone causes infertility or that CatSper blockade is a potential safe target for contraception. STUDY DESIGN, SIZE, DURATION: Spermatozoa were obtained from donors and subfertile IVF patients attending a hospital assisted reproductive techniques clinic between January 2013 and December 2014. In total 134 IVF patients, 28 normozoospermic donors and 10 patients recalled due to a history of failed/low fertilization at IVF took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Samples were primarily screened using the Ca(2+) influx induced by progesterone and, if cell number was sufficient, samples were also assessed by hyperactivation and penetration into viscous media. A defective Ca(2+) response to progesterone was defined using the 99% confidence interval from the distribution of response amplitudes in normozoospermic donors. Samples showing a defective Ca(2+) response were further examined in order to characterize the potential CatSper abnormalities. In men where there was a consistent and robust failure of calcium signalling, a direct assessment of CatSper function was performed using electrophysiology (patch clamping), and a blood sample was obtained for genetic analysis. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 101/102 (99%) IVF patients and 22/23 (96%) donors exhibited a normal Ca(2+) response. The mean (± SD) normalized peak response did not differ between donors and IVF patients (2.57 ± 0.68 [n = 34 ejaculates from 23 different donors] versus 2.66 ± 0.68 [n = 102 IVF patients], P = 0.63). In recall patients, 9/10 (90%) showed a normal Ca(2+) response. Three men were initially identified with a defective Ca(2+) influx. However, only one (Patient 1) had a defective response in repeat semen samples. Electrophysiology experiments on sperm from Patient 1 showed a near absence of CatSper current and exon screening demonstrated no mutations in the coding regions of the CatSper complex. There was no increase in penetration of viscous media when the spermatozoa were stimulated with progesterone and importantly there was failed fertilization at IVF. LIMITATIONS, REASONS FOR CAUTION: A key limitation relates to working with a specific functional parameter (Ca(2+) influx induced by progesterone) in fresh sperm samples from donors and patients that have limited viability. Therefore, for practical, technical and logistical reasons, some men (∼ 22% of IVF patients) could not be screened. As such the incidence of significant Ca(2+) abnormalities induced by progesterone may be higher than the ∼ 1% observed here. Additionally, we used a strict definition of a defective Ca(2+) influx such that only substantial abnormalities were selected for further study. Furthermore, electrophysiology was only performed on one patient with a robust and repeatable defective calcium response. This man had negligible CatSper current but more subtle abnormalities (e.g. currents present but significantly smaller) may have been present in men with either normal or below normal Ca(2+) influx. WIDER IMPLICATIONS OF THE FINDINGS: These data add significantly to the understanding of the role of CatSper in human sperm function and its impact on male fertility. Remarkably, these findings provide the first direct evidence that CatSper is a suitable and specific target for human male contraception.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/genética , Fertilización/fisiología , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Adulto , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Fertilización/genética , Fertilización In Vitro , Humanos , Infertilidad Masculina/genética , Masculino , Progesterona/farmacología , Recuento de Espermatozoides , Espermatozoides/efectos de los fármacos
7.
Cell Calcium ; 58(1): 105-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25465894

RESUMEN

Motility and fertilization potential of mammalian sperm are regulated by ion homeostasis which in turn is under tight control of ion channels and transporters. Sperm intracellular pH, membrane voltage and calcium concentration ([Ca(2+)]i) are all important for sperm activity within the female reproductive tract. While all mammalian sperm are united in their goal to find and fertilize an egg, the molecular mechanisms they utilize for this purpose are diverse and differ between species especially on the level of ion channels. Recent direct recording from sperm cells of different species indicate the differences between rodent, non-human primate, ruminant, and human sperm on the basic levels of their ion channel regulation. In this review we summarize the current knowledge about ion channel diversity of the animal kingdom and concentrate our attention on flagellar ion channels of mammalian sperm.


Asunto(s)
Canales Iónicos/metabolismo , Cola del Espermatozoide/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Masculino , Canales de Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
8.
Hum Reprod ; 28(12): 3167-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24067601

RESUMEN

STUDY QUESTION: Is the environmental endocrine disruptor p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) able to induce non-genomic changes in human sperm and consequently affect functional sperm parameters? SUMMARY ANSWER: p,p'-DDE promoted Ca(2+) flux into human sperm by activating CatSper channels even at doses found in human reproductive fluids, ultimately compromising sperm parameters important for fertilization. WHAT IS KNOWN ALREADY: p,p'-DDE may promote non-genomic actions and interact directly with pre-existing signaling pathways, as already observed in other cell types. However, although often found in both male and female reproductive fluids, its effects on human spermatozoa function are not known. STUDY DESIGN, SIZE, DURATION: Normozoospermic sperm samples from healthy individuals were included in this study. Samples were exposed to several p,p'-DDE concentrations for 3 days at 37°C and 5% CO2 in vitro to mimic the putative continuous exposure to this toxicant in the female reproductive tract in vivo. Shorter p,p'-DDE incubation periods were also performed in order to monitor sperm rapid Ca(2+) responses. All experiments were repeated on a minimum of five sperm samples from different individuals. PARTICIPANTS/MATERIALS, SETTING, METHODS: All healthy individuals were recruited at the Biosciences School, University of Birmingham, the Medical Research Institute, University of Dundee and in the Human Reproduction Service at University Hospitals of Coimbra. Intracellular Ca(2+) concentration ([Ca(2+)]i) was monitored by imaging single spermatozoa loaded with Oregon Green BAPTA-1AM and further whole-cell patch-clamp recordings were performed to validate our results. Sperm viability and acrosomal integrity were assessed using the LIVE/DEAD sperm vitality kit and the acrosomal content marker PSA-FITC, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: p,p'-DDE rapidly increased [Ca(2+)]i (P < 0.05) even at extremely low doses (1 pM and 1 nM), with magnitudes of response up to 200%, without affecting sperm viability, except after 3 days of continuous exposure to the highest concentration tested (P < 0.05). Furthermore, experiments performed in a low Ca(2+) medium demonstrated that extracellular Ca(2+) influx was responsible for this Ca(2+) increase (P < 0.01). Mibefradil and NNC 55-0396, both inhibitors of the sperm-specific CatSper channel, reversed the p,p'-DDE-induced [Ca(2+)]i rise, suggesting the participation of CatSper in this process (P < 0.05). In fact, whole-cell patch-clamp recordings confirmed CatSper as a target of p,p'-DDE action by monitoring an increase in CatSper currents of >100% (P < 0.01). Finally, acrosomal integrity was adversely affected after 2 days of exposure to p,p'-DDE concentrations, suggesting that [Ca(2+)]i rise may cause premature acrosome reaction (P < 0.05). LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study, and caution must be taken when extrapolating the results. WIDER IMPLICATIONS OF THE FINDINGS: A novel non-genomic p,p'-DDE mechanism specific to sperm is shown in this study. p,p'-DDE was able to induce [Ca(2+)]i rise in human sperm through the opening of CatSper consequently compromising male fertility. The promiscuous nature of CatSper activation may predispose human sperm to the action of some persistent endocrine disruptors. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by both the Portuguese National Science Foundation (FCT; PEst-C/SAU/LA0001/2011) and the UK Wellcome Trust (Grant #86470). SM was supported by the Infertility Research Trust. RST is a recipient of a PhD fellowship from FCT (SFRH/BD/46002/2008). None of the authors has any conflict of interest to declare.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Calcio/metabolismo , Diclorodifenil Dicloroetileno/toxicidad , Disruptores Endocrinos/toxicidad , Espermatozoides/efectos de los fármacos , Bencimidazoles/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclopropanos , Humanos , Técnicas In Vitro , Masculino , Mibefradil/farmacología , Naftalenos , Espermatozoides/fisiología
9.
Biochem J ; 448(2): 189-200, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22943284

RESUMEN

Ca2+i signalling is pivotal to sperm function. Progesterone, the best-characterized agonist of human sperm Ca2+i signalling, stimulates a biphasic [Ca2+]i rise, comprising a transient and subsequent sustained phase. In accordance with recent reports that progesterone directly activates CatSper, the [Ca2+]i transient was detectable in the anterior flagellum (where CatSper is expressed) 1-2 s before responses in the head and neck. Pre-treatment with 5 µM 2-APB (2-aminoethoxydiphenyl borate), which enhances activity of store-operated channel proteins (Orai) by facilitating interaction with their activator [STIM (stromal interaction molecule)] 'amplified' progesterone-induced [Ca2+]i transients at the sperm neck/midpiece without modifying kinetics. The flagellar [Ca2+]i response was unchanged. 2-APB (5 µM) also enhanced the sustained response in the midpiece, possibly reflecting mitochondrial Ca2+ accumulation downstream of the potentiated [Ca2+]i transient. Pre-treatment with 50-100 µM 2-APB failed to potentiate the transient and suppressed sustained [Ca2+]i elevation. When applied during the [Ca2+]i plateau, 50-100 µM 2-APB caused a transient fall in [Ca2+]i, which then recovered despite the continued presence of 2-APB. Loperamide (a chemically different store-operated channel agonist) enhanced the progesterone-induced [Ca2+]i signal and potentiated progesterone-induced hyperactivated motility. Neither 2-APB nor loperamide raised pHi (which would activate CatSper) and both compounds inhibited CatSper currents. STIM and Orai were detected and localized primarily to the neck/midpiece and acrosome where Ca2+ stores are present and the effects of 2-APB are focussed, but store-operated currents could not be detected in human sperm. We propose that 2-APB-sensitive channels amplify [Ca2+]i elevation induced by progesterone (and other CatSper agonists), amplifying, propagating and providing spatio-temporal complexity in [Ca2+]i signals of human sperm.


Asunto(s)
Compuestos de Boro/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Agonistas de los Canales de Calcio/farmacología , Moléculas de Adhesión Celular/metabolismo , Humanos , Técnicas In Vitro , Loperamida/farmacología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Proteína ORAI2 , Progesterona/farmacología , Pieza Intermedia del Espermatozoide/efectos de los fármacos , Pieza Intermedia del Espermatozoide/metabolismo , Motilidad Espermática/efectos de los fármacos , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2
10.
Asian J Androl ; 13(1): 53-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21102478

RESUMEN

Sperm dysfunction is the single most common cause of infertility, yet what is remarkable is that, there is no drug a man can take or add to his spermatozoa in vitro to improve fertility. One reason for the lack of progress in this area is that our understanding of the cellular and molecular workings of the mature spermatazoon is limited. However, over the last few years there has been considerable progress in our knowledge base and in addressing new methods to diagnose sperm dysfunction. We review the current state of the field and provide insights for further development. We conclude that: (i) there is little to be gained from more studies identifying/categorizing various populations of men using a basic semen assessment, where an effort is required in making sure the analysis is performed in an appropriate high quality way; (ii) technological development is likely to bring the reality of sperm function testing closer to implementation into the clinical pathways. In doing this, these assays must be robust, cheap (or more appropriately termed cost effective), easy to use and clinically useful; and (iii) clinical necessity, e.g., the need to identify the highest quality spermatozoon for injection is driving basic research forward. This is an exciting time to be an andrologist and, likely, a fruitful one.


Asunto(s)
Infertilidad Masculina/diagnóstico , Infertilidad Masculina/fisiopatología , Espermatozoides/fisiología , Animales , Humanos , Masculino , Recuento de Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...