Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3010, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589348

RESUMEN

Single-ion anisotropy is vital for the observation of Single-Molecule Magnet (SMM) properties (i.e., a slow dynamics of the magnetization) in lanthanide-based systems. In the case of europium, the occurrence of this phenomenon has been inhibited by the spin and orbital quantum numbers that give way to J = 0 in the trivalent state and the half-filled population of the 4f orbitals in the divalent state. Herein, by optimizing the local crystal field of a quasi-linear bis(silylamido) EuII complex, the [EuII(N{SiMePh2}2)2] SMM is described, providing an example of a europium complex exhibiting slow relaxation of its magnetization. This behavior is dominated by a thermally activated (Orbach-like) mechanism, with an effective energy barrier of approximately 8 K, determined by bulk magnetometry and electron paramagnetic resonance. Ab initio calculations confirm second-order spin-orbit coupling effects lead to non-negligible axial magnetic anisotropy, splitting the ground state multiplet into four Kramers doublets, thereby allowing for the observation of an Orbach-like relaxation at low temperatures.

2.
J Am Chem Soc ; 146(6): 4234-4241, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317384

RESUMEN

Aromatic π-stacking is a weakly attractive, noncovalent interaction often found in biological macromolecules and synthetic supramolecular chemistry. The weak nondirectional nature of π-stacking can present challenges in the design of materials owing to their weak, nondirectional nature. However, when aromatic π-systems contain an unpaired electron, stronger attraction involving face-to-face π-orbital overlap is possible, resulting in covalent so-called "pancake" bonds. Two-electron, multicenter single pancake bonds are well known, whereas four-electron double pancake bonds are rare. Higher-order pancake bonds have been predicted, but experimental systems are unknown. Here, we show that six-electron triple pancake bonds can be synthesized by a 3-fold reduction of hexaazatrinaphthylene (HAN) and subsequent stacking of the [HAN]3- triradicals. Our analysis reveals a multicenter covalent triple pancake bond consisting of a σ-orbital and two equivalent π-orbitals. An electrostatic stabilizing role is established for the tetravalent thorium and uranium ions in these systems. We also show that the electronic absorption spectrum of the triple pancake bonds closely matches computational predictions, providing experimental verification of these unique interactions. The discovery of conductivity in thin films of triply bonded π-dimers presents new opportunities for the discovery of single-component molecular conductors and other spin-based molecular materials.

3.
Chem Commun (Camb) ; 59(94): 13970-13973, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37937393

RESUMEN

Reaction of the 1,2,4,5-tetrazine (tz˙-) radical and {Cp*2Tb}+ has yielded a tetranuclear radical-bridged TbIII single-molecule magnet. The strong Ln-radical coupling and the electronic differences of the TbIII ions in [(Cp*2Tb)4(tz˙-)4]·3C6H6 (1) are probed via magnetic, magneto-optical and computational studies.

4.
Nat Chem ; 15(8): 1100-1107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37231297

RESUMEN

The best-performing single-molecule magnets (SMMs) have historically relied on pseudoaxial ligands delocalized across several coordinated atoms. This coordination environment has been found to elicit strong magnetic anisotropy, but lanthanide-based SMMs with low coordination numbers have remained synthetically elusive species. Here we report a cationic 4f complex bearing only two bis-silylamide ligands, Yb(III)[{N(SiMePh2)2}2][Al{OC(CF3)3}4], which exhibits slow relaxation of its magnetization. The combination of the bulky silylamide ligands and weakly coordinating [Al{OC(CF3)3}4]- anion provides a sterically hindered environment that suitably stabilizes the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy. The resolution of the mJ states by luminescence spectroscopy is supported by ab initio calculations, which show a large ground-state splitting of approximately 1,850 cm-1. These results provide a facile route to access a bis-silylamido Yb(III) complex, and further underline the desirability of axially coordinated ligands with well-localized charges for high-performing SMMs.

5.
Chem Commun (Camb) ; 59(13): 1837-1840, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36722929

RESUMEN

The hypothetical [BiPh]- anion obtained by a one-electron reduction from the respective bismuthinidene is proposed as a basis for constructing single-molecule magnets (SMMs) consisting purely of main-group elements. Based on high-level quantum-chemical calculations, the [BiPh]- anion is predicted to be a SMM with an effective barrier of 6418 cm-1 for the relaxation of magnetization. This barrier is much larger than any effective barrier observed so far in any experimentally characterized SMM. The reduction potential for the [BiPh]-/BiPh couple is calculated as -1.5 V, which implies that the [BiPh]- moiety is accessible from stable bismuthinidenes containing a BiPh moiety and sufficient steric protection for the reactive Bi atom. Thus, [BiPh]- provides a blueprint for the realization of purely main-group SMMs which can surpass in their properties the best known dysprosium-based SMMs.

6.
J Am Chem Soc ; 144(40): 18229-18233, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36169550

RESUMEN

The concept of oxidation state plays a fundamentally important role in defining the chemistry of the elements. In the f block of the periodic table, well-known oxidation states in compounds of the lanthanides include 0, +2, +3 and +4, and oxidation states for the actinides range from +7 to +2. Oxidation state +1 is conspicuous by its absence from the f-block elements. Here we show that the uranium(II) metallocene [U(η5-C5iPr5)2] and the uranium(III) metallocene [IU(η5-C5iPr5)2] can be reduced by potassium graphite in the presence of 2.2.2-cryptand to the uranium(I) metallocene [U(η5-C5iPr5)2]- (1) (C5iPr5 = pentaisopropylcyclopentadienyl) as the salt of [K(2.2.2-cryptand)]+. An X-ray crystallographic study revealed that 1 has a bent metallocene structure, and theoretical studies and magnetic measurements confirmed that the electronic ground state of uranium(I) adopts a 5f3(7s/6dz2)1(6dx2-y2/6dxy)1 configuration. The metal-ligand bonding in 1 consists of contributions from uranium 5f, 6d, and 7s orbitals, with the 6d orbitals engaging in weak but non-negligible covalent interactions. Identification of the oxidation state +1 for uranium expands the range of isolable oxidation states for the f-block elements and potentially signposts a synthetic route to this elusive species for other actinides and the lanthanides.

7.
Dalton Trans ; 51(36): 13596-13600, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36047750

RESUMEN

The first oligopyrrolic Cu(II)-based metallocage featuring two antiferromagnetically coupled dimeric cupric tetracarboxylate units linked by a single molecule of water was assembled successfully using a nonlinear pyridine-pyrrolate ligand. Broken symmetry density functional theory (BS-DFT) calculations show that the exchange couplings between Cu(II) ions in the Cu2 unit and over the water bridge are -298 and -0.13 cm-1, respectively.

8.
Inorg Chem ; 61(16): 6017-6025, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35420419

RESUMEN

Magnetic bistability in single-molecule magnets (SMMs) is a potential basis for new types of nanoscale information storage material. The standard model for thermally activated relaxation of the magnetization in SMMs is based on the occurrence of a single Orbach process. Here, we show that incorporating a phosphorus atom into the framework of the dysprosium metallocene [(CpiPr5)Dy(CpPEt4)]+[B(C6F5)4]- (CpiPr5 is penta-isopropylcyclopentadienyl, CpPEt4 is tetraethylphospholyl) leads to the occurrence of two distinct high-temperature Orbach processes, with energy barriers of 1410(10) and 747(7) cm-1, respectively. These barriers provide experimental evidence for two different spin-phonon coupling regimes, which we explain with the aid of ab initio calculations. The strong and highly axial crystal field in this SMM also allows magnetic hysteresis to be observed up to 70 K, using a scan rate of 25 Oe s-1. In characterizing this SMM, we show that a conventional Debye model and consideration of rotational contributions to the spin-phonon interaction are insufficient to explain the observed phenomena.

9.
Angew Chem Int Ed Engl ; 61(17): e202200525, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35108431

RESUMEN

Replacing a monoanionic cyclopentadienyl (Cp) ligand in dysprosium single-molecule magnets (SMMs) with a dianionic cyclobutadienyl (Cb) ligand in the sandwich complexes [(η4 -Cb'''')Dy(η5 -C5 Me4 t Bu)(BH4 )]- (1), [(η4 -Cb'''')Dy(η8 -Pn† )K(THF)] (2) and [(η4 -Cb'''')Dy(η8 -Pn† )]- (3) leads to larger energy barriers to magnetization reversal (Cb''''=C4 (SiMe3 )4 , Pn† =1,4-di(tri-isopropylsilyl)pentalenyl). Short distances to the Cb'''' ligands and longer distances to the Cp ligands in 1-3 are consistent with the crystal field splitting being dominated by the former. Theoretical analysis shows that the magnetic axes in the ground Kramers doublets of 1-3 are oriented towards the Cb'''' ligands. The theoretical axiality parameter and the relative axiality parameter Z and Zrel are introduced to facilitate comparisons of the SMM performance of 1-3 with a benchmark SMM. Increases in Z and Zrel when Cb''' replaces Cp signposts a route to SMMs with properties that could surpass leading systems.

10.
Dalton Trans ; 50(43): 15831-15840, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34708847

RESUMEN

We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N'-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L')2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it was found that, when crystalline, it undergoes a thermally induced process where 25% of the molecules in the material change to a diamagnetic low-spin ground state below 100 K. Single crystal X-ray studies conducted at 95 K afforded detailed structural evidence for this partial change of spin state of 2 showing the existence of crystallographically distinct molecules in a 3 : 1 ratio which exist in high- and low-spin states, respectively. Also, the magnetic behaviour of 2 was found to be related with the crystallinity of the material as demonstrated by near-IR radiation to unpaired electrons conversion ability of amorphous sample of 2.

11.
Angew Chem Int Ed Engl ; 60(45): 24206-24213, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34427984

RESUMEN

Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.

12.
Chem Commun (Camb) ; 57(52): 6396-6399, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34085074

RESUMEN

The dimetallic fulvalene-bridged dysprosium complex [{Dy(Cp*)(µ-BH4)}2(Fvtttt)] (1, Cp* = C5Me5) is converted into the trimetallic borohydride-bridged species [{Dy(Cp*)(Fvtttt)}2Dy(µ-BH4)3] (2). In turn, 2 is reacted with a silylium electrophile to give [{Dy(Cp*)(µ-BH4)(Fvtttt)}2Dy][B(C6F5)4] ([3][B(C6F5)3]), the first trimetallic dysprosocenium cation. Compound [3][B(C6F5)3] can also be formed directly from 1 by adding two equivalents of the electrophile. A three-fold enhancement in the effective energy barrier from 2 to 3 is observed and interpreted with the aid of ab initio calculations.

13.
Chem Sci ; 12(8): 2948-2954, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34164062

RESUMEN

A series of hybrid uranocenes consisting of uranium(iv) sandwiched between cyclobutadienyl (Cb) and cyclo-octatetraenyl (COT) ligands has been synthesized, structurally characterized and studied computationally. The dimetallic species [(η4-Cb'''')(η8-COT)U(µ:η2:η8-COT)U(THF)(η4-Cb'''')] (1) forms concomitantly with, and can be separated from, monometallic [(η4-Cb'''')U(THF)(η8-COT)] (2) (Cb'''' = 1,2,3,4-tetrakis(trimethylsilyl)cyclobutadienyl, COT = cyclo-octatetraenyl). In toluene solution at room temperature, 1 dissociates into 2 and the unsolvated uranocene [(η4-Cb'''')U(η8-COT)] (3). By applying a high vacuum, both 1 and 2 can be converted directly into 3. Using bulky silyl substituents on the COT ligand allowed isolation of base-free [(η4-Cb'''')U{η8-1,4-(iPr3Si)2C8H6}] (4), with compounds 3 and 4 being new members of the bis(annulene) family of actinocenes and the first to contain a cyclobutadienyl ligand. Computational studies show that the bonding in the hybrid uranocenes 3 and 4 has non-negligible covalency. New insight into actinocene bonding is provided by the complementary interactions of the different ligands with uranium, whereby the 6d orbitals interact most strongly with the cyclobutadienyl ligand and the 5f orbitals do so with the COT ligands. The redox-neutral activation of diethyl ether by [(η4-Cb'''')U(η8-C8H8)] is also described and represents a uranium-cyclobutadienyl cooperative process, potentially forming the basis of further small-molecule activation chemistry.

14.
Inorg Chem ; 60(6): 4108-4115, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33621467

RESUMEN

The two-coordinate metal amide complexes V{N(SiMePh2)2}2 (1) and Cr{N(SiMe2Ph)2}2 (2) were synthesized by reaction of two equivalents of LiN(SiMePh2)2 with VI2(THF)4 or CrCl2(THF)2 in n-hexane. Their crystal structures showed that they have bent coordination, N-V-N = 137.0(4)°, N-Cr-N = 139.19(5)°, at the metals. The vanadium complex (1) displayed no tendency to isomerize as previously observed for some V(II) amido complexes. Curie fits of SQUID magnetic measurements afforded magnetic moments of 3.36 (1) and 4.68 (2) µB, consistent with high-spin configurations. These values are lower than the spin-only values of 3.88 and 4.90 µB expected for d3 and d4 complexes, suggesting a significant unquenched orbital angular momentum contribution to the overall moment, which is lower as a result of the positive spin-orbit coupling constants.

15.
Chem Sci ; 11(22): 5745-5752, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832050

RESUMEN

The dinucleating fulvalenyl ligand [1,1',3,3'-(C5 t Bu2H2)2]2- (Fvtttt) was used to synthesize the dimetallic dysprosocenium cation [{Dy(η5-Cp*)}2(µ-BH4)(η5:η5-Fvtttt)]+ (3) as the salt of [B(C6F5)4]- (Cp* = C5Me5). Compound [3][B(C6F5)4] was obtained using a method in which the double half-sandwich complex [{Dy(BH4)2(THF)}2(Fvtttt)] (1) was reacted with KCp* to give the double metallocene [{Dy(Cp*)(µ-BH4)}2(Fvtttt)] (2), followed by removal of a bridging borohydride ligand upon addition of [(Et3Si)2(µ-H)][B(C6F5)4]. The dimetallic fulvalenyl complexes 1-3 give rise to single-molecule magnet (SMM) behaviour in zero applied field, with the effective energy barriers of 154(15) cm-1, 252(4) cm-1 and 384(18) cm-1, respectively, revealing a significant improvement in performance across the series. The magnetic properties are interpreted with the aid of ab initio calculations, which show substantial increases in the axiality of the crystal field from 1 to 2 to 3 as a consequence of the increasingly dominant role of the Fvtttt and Cp* ligands, with the barrier height and hysteresis properties being attenuated by the equatorial borohydride ligands. The experimental and theoretical results described in this study furnish a blueprint for the design and synthesis of poly-cationic dysprosocenium SMMs with properties that may surpass those of benchmark systems.

16.
Dalton Trans ; 49(30): 10477-10485, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685954

RESUMEN

Three di-nuclear DyIII complexes [Dy2(H2L)2(tfa)]·Cl·3DMF (1), [Dy2(H2L)2(MeO)(SCN)]·MeOH (2) and [Dy2(H2L)2(MeOH)Cl]·Cl·2MeOH (3) were synthesized and structurally and magnetically characterized. The Dy1/Dy2 centers in these complexes are all nine-coordinate with spherical capped square antiprism (local C4v symmetry) environments. All complexes display single-molecule magnet (SMM) behavior under zero applied dc field with their properties dependent on the nature of the magnetic interactions between the DyIII ions. Ab initio calculations substantiate that all DyIII ions show a weakly axial crystal-field environment with the exception of one of the DyIII ions in complex 2. The ground Kramers doublets show modest amounts of quantum tunneling of magnetization that gets blocked by the interaction between the DyIII ions, leading to a thermally activated slow relaxation of magnetization. The interaction between the ions is ferromagnetic and mostly originates from the dipolar interaction. However, anti-ferromagnetic intermolecular interaction plays an important role and in the case of complex 2 it is sufficiently strong to mask the ferromagnetic intramolecular interaction.

17.
Chem Commun (Camb) ; 56(44): 5937-5940, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32347247

RESUMEN

Partial metathesis between two weakly-coordinating anions in the archetypical dysprosium metallocene results in the first example of [BPh4]- as a bridging ligand in 4f metals, with a unique η2,η2:η2,η2-bridge. Magnetic susceptibility and relaxation dynamics studies along with ab initio calculations reveal improved slow relaxation of the magnetization in over its mononuclear congener, resulting in an energy barrier of 490 K/340 cm-1 and waist-restricted hysteresis up to 6.5 K.

18.
Chem Commun (Camb) ; 56(34): 4708-4711, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32215423

RESUMEN

Intact transfer of the cyclobutadienyl ligand [C4(SiMe3)4]2- to yttrium and dysprosium (M) produces the half-sandwich complexes [M{η4-C4(SiMe3)4}(BH4)2(THF)]- as coordination polymers with bridging sodium or potassium ions. The dysprosium versions are single-molecule magnets (SMMs) with energy barriers of 371(7) and 357(4) cm-1, respectively. The pristine cyclobutadienyl ligands provide a strong axial crystal field that enhances the SMM properties relative to related cyclopentadienyl compounds.

20.
Chem Commun (Camb) ; 56(6): 944-947, 2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31853530

RESUMEN

The 1 : 1 reactions of uranium(iv) tetrakis(borohydride) with the sodium and potassium salts of the cyclobutadienyl anion [C4(SiMe3)4]2- (Cb'''') produce the half-sandwich complexes [Na(12-crown-4)2][U(η4-Cb'''')(BH4)3] and [U(η4-Cb'''')(µ-BH4)3{K(THF)2}]2. In the 1 : 2 reaction of U(BH4)4 with Na2Cb'''', formation of [U(η4-Cb'''')(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(BH4))]- reveals that a Cb'''' ligand undergoes an intramolecular deprotonation, resulting in an allyl/tuck-in bonding mode. A computational study reveals that the uranium-Cb'''' bonding has an appreciable covalent component with contributions from the uranium 5f and 6d orbitals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...