Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546793

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) has an atypical immature particle morphology compared to other retroviruses. This indicates that these particles are formed in a way that is unique. Here we report the results of cryo-electron tomography (cryo-ET) studies of HTLV-1 virus-like particles (VLPs) assembled in vitro, as well as derived from cells. This work shows that HTLV-1 employs an unconventional mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature CA tubular arrays reveals that the primary stabilizing component in HTLV-1 is CA-NTD. Mutagenesis and biophysical analysis support this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the CA-CTD. These results are the first to provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus, and this helps explain why HTLV-1 particles are morphologically distinct.

3.
J Mol Biol ; 435(15): 168143, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150290

RESUMEN

Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.


Asunto(s)
VIH-2 , Virión , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Humanos , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , VIH-2/química , Virión/química , Ensamble de Virus
4.
Sci Adv ; 8(33): eabj3236, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984883

RESUMEN

The cell cortex plays a crucial role in cell mechanics, signaling, and development. However, little is known about the influence of the cortical meshwork on the spatial distribution of cytoplasmic biomolecules. Here, we describe a fluorescence microscopy method with the capacity to infer the intracellular distribution of labeled biomolecules with subresolution accuracy. Unexpectedly, we find that RNA binding proteins are partially excluded from the cytoplasmic volume adjacent to the plasma membrane that corresponds to the actin cortex. Complementary diffusion measurements of RNA-protein complexes suggest that a rudimentary model based on excluded volume interactions can explain this partitioning effect. Our results suggest the actin cortex meshwork may play a role in regulating the biomolecular content of the volume immediately adjacent to the plasma membrane.

5.
J Mol Biol ; 434(19): 167753, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868362

RESUMEN

Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.


Asunto(s)
Proteínas de la Cápside , VIH-2 , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , VIH-1/genética , VIH-2/genética , Humanos , Mutagénesis , Conformación Proteica , Ensamble de Virus/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
6.
Front Virol ; 22022.
Artículo en Inglés | MEDLINE | ID: mdl-35783361

RESUMEN

Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.

7.
Viruses ; 14(5)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632835

RESUMEN

Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.


Asunto(s)
VIH-1 , Retroviridae , Genómica , VIH-1/genética , Humanos , ARN Viral/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Ensamble de Virus
8.
J Mol Biol ; 434(12): 167609, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490898

RESUMEN

Assembly of human T-cell leukemia virus type 1 (HTLV-1) particles is initiated by the trafficking of virally encoded Gag polyproteins to the inner leaflet of the plasma membrane (PM). Gag-PM interactions are mediated by the matrix (MA) domain, which contains a myristoyl group (myr) and a basic patch formed by lysine and arginine residues. For many retroviruses, Gag-PM interactions are mediated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]; however, previous studies suggested that HTLV-1 Gag-PM interactions and therefore virus assembly are less dependent on PI(4,5)P2. We have recently shown that PI(4,5)P2 binds directly to HTLV-1 unmyristoylated MA [myr(-)MA] and that myr(-)MA binding to membranes is significantly enhanced by inclusion of phosphatidylserine (PS) and PI(4,5)P2. Herein, we employed structural, biophysical, biochemical, mutagenesis, and cell-based assays to identify residues involved in MA-membrane interactions. Our data revealed that the lysine-rich motif (Lys47, Lys48, and Lys51) constitutes the primary PI(4,5)P2-binding site. Furthermore, we show that arginine residues 3, 7, 14 and 17 located in the unstructured N-terminus are essential for MA binding to membranes containing PS and/or PI(4,5)P2. Substitution of lysine and arginine residues severely attenuated virus-like particle production, but only the lysine residues could be clearly correlated with reduced PM binding. These results support a mechanism by which HTLV-1 Gag targeting to the PM is mediated by a trio engagement of the myr group, Arg-rich and Lys-rich motifs. These findings advance our understanding of a key step in retroviral particle assembly.


Asunto(s)
Membrana Celular , Productos del Gen gag , Virus Linfotrópico T Tipo 1 Humano , Ensamble de Virus , Arginina/metabolismo , Membrana Celular/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Lisina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/química , Unión Proteica
9.
J Mol Biol ; 434(2): 167355, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34774569

RESUMEN

Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Aminohidrolasas/metabolismo , Citosina Desaminasa/metabolismo , VIH-2 , Desaminasa APOBEC-3G/genética , Aminohidrolasas/genética , Citidina Desaminasa/metabolismo , Citosina Desaminasa/genética , Expresión Génica , Infecciones por VIH , VIH-2/genética , Humanos , Mutación , Replicación Viral
10.
Viruses ; 13(7)2021 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-34372543

RESUMEN

Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.


Asunto(s)
VIH-1/genética , VIH-2/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Genoma Viral/genética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Flujo de Trabajo
11.
J Mol Biol ; 433(19): 167161, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34298060

RESUMEN

Retroviral Gag targeting to the plasma membrane (PM) for assembly is mediated by the N-terminal matrix (MA) domain. For many retroviruses, Gag-PM interaction is dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, it has been shown that for human T-cell leukemia virus type 1 (HTLV-1), Gag binding to membranes is less dependent on PI(4,5)P2 than HIV-1, suggesting that other factors may modulate Gag assembly. To elucidate the mechanism by which HTLV-1 Gag binds to the PM, we employed NMR techniques to determine the structure of unmyristoylated MA (myr(-)MA) and to characterize its interactions with lipids and liposomes. The MA structure consists of four α-helices and unstructured N- and C-termini. We show that myr(-)MA binds to PI(4,5)P2 via the polar head and that binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups on the inositol ring, indicating that the MA-IP binding is governed by charge-charge interactions. The IP binding site was mapped to a well-defined basic patch formed by lysine and arginine residues. Using an NMR-based liposome binding assay, we show that PI(4,5)P2and phosphatidylserine enhance myr(-)MA binding in a synergistic fashion. Confocal microscopy data revealed formation of puncta on the PM of Gag expressing cells. However, G2A-Gag mutant, lacking myristoylation, is diffuse and cytoplasmic. These results suggest that although myr(-)MA binds to membranes, myristoylation appears to be key for formation of HTLV-1 Gag puncta on the PM. Altogether, these findings advance our understanding of a key mechanism in retroviral assembly.


Asunto(s)
Membrana Celular/metabolismo , Productos del Gen gag/química , Productos del Gen gag/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Sitios de Unión , Línea Celular , Membrana Celular/virología , Productos del Gen gag/genética , Virus Linfotrópico T Tipo 1 Humano/química , Humanos , Células Jurkat , Microscopía Confocal , Modelos Moleculares , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
12.
J Mol Biol ; 433(18): 167111, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34153286

RESUMEN

5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.


Asunto(s)
Antivirales/farmacología , Azacitidina/análogos & derivados , Citidina Trifosfato/análogos & derivados , Infecciones por VIH/tratamiento farmacológico , Leucemia Experimental/tratamiento farmacológico , Mutación/efectos de los fármacos , Infecciones por Retroviridae/tratamiento farmacológico , Infecciones Tumorales por Virus/tratamiento farmacológico , Animales , Azacitidina/farmacología , Gatos , Citidina Trifosfato/farmacología , VIH/efectos de los fármacos , Infecciones por VIH/virología , Humanos , Virus de la Leucemia Felina/efectos de los fármacos , Virus de la Leucemia Murina/efectos de los fármacos , Leucemia Experimental/virología , Ratones , Mutagénesis , Mutágenos , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/virología , Replicación Viral
13.
ACS Chem Biol ; 16(3): 529-538, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33619959

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 µM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.


Asunto(s)
Antivirales/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Darunavir/análogos & derivados , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Antivirales/farmacología , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/genética , Darunavir/farmacología , Descubrimiento de Drogas , Escherichia coli/genética , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Terapia Molecular Dirigida , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
14.
Cell Rep ; 31(10): 107749, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521274

RESUMEN

Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2UC1 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2UC1 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains. Despite the resulting 10- to 100-fold decrease in binding affinity, HIV-2UC1 Envs exhibit long-lived activation state and efficient fusion activity. These observations suggest that HIV-2UC1 Envs evolved to balance low affinity with an improved and readily triggerable molecular machinery to mediate entry. Resistance to cold exposure, similar to many primary HIV-1 isolates, and to sCD4 neutralization suggests that HIV-2UC1 Envs preferentially sample a closed Env conformation. Our data provide insights into the mechanism of HIV entry.


Asunto(s)
VIH-2/genética , Unión Proteica/genética , Humanos , Conformación Proteica
15.
Nucleic Acids Res ; 48(3): 1353-1371, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31943071

RESUMEN

The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.


Asunto(s)
Citidina Desaminasa/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Desaminación/genética , Desaminasas APOBEC , Sitios de Unión/genética , Línea Celular , Citidina Desaminasa/química , Citosina Desaminasa/química , Citosina Desaminasa/genética , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , VIH-1/genética , VIH-1/patogenicidad , Virus de la Hepatitis B/genética , Humanos , Mutagénesis/genética , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Retroelementos/genética
16.
Biophys J ; 118(2): 281-293, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31870539

RESUMEN

Delicate and transitory protein engagement at the plasma membrane (PM) is crucial to a broad range of cellular functions, including cell motility, signal transduction, and virus replication. Here, we describe a dual-color (DC) extension of the fluorescence z-scan technique, which has proven successful for quantification of peripheral membrane protein binding to the PM in living cells. We demonstrate that the coexpression of a second, distinctly colored fluorescent protein provides a soluble reference species that delineates the extent of the cell cytoplasm and lowers the detection threshold of z-scan PM-binding measurements by an order of magnitude. DC z-scan generates an intensity profile for each detection channel that contains information on the axial distribution of the peripheral membrane and reference protein. Fit models for DC z-scan are developed and verified using simple model systems. Next, we apply the quantitative DC z-scan technique to investigate the binding of two peripheral membrane protein systems for which previous z-scan studies failed to detect binding: human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein and lipidation-deficient mutants of the fibroblast growth factor receptor substrate 2α. Our findings show that these mutations severely disrupt PM association of fibroblast growth factor receptor substrate 2α but do not eliminate it. We further detected binding of HIV-1 MA to the PM using DC z-scan. Interestingly, our data indicate that HIV-1 MA binds cooperatively to the PM with a dissociation coefficient of Kd ∼16 µM and Hill coefficient of n ∼2.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Espectrometría de Fluorescencia/métodos , Color , Células HeLa , Humanos , Unión Proteica
17.
Retrovirology ; 16(1): 29, 2019 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655617

RESUMEN

BACKGROUND: Terminally differentiated/nondividing macrophages, a key target cell type of HIV-1, harbor extremely low dNTP concentrations established by a host dNTP triphosphohydrolase, SAM domain and HD domain containing protein 1 (SAMHD1). We tested whether the induction of dNTP pool imbalance can affect HIV-1 replication in macrophages. For this test, we induced a large dNTP pool imbalance by treating human primary monocyte derived macrophages with either one or three of the four deoxynucleosides (dNs), which are phosphorylated to dNTPs in cells, to establish two different dNTP imbalance conditions in macrophages. RESULTS: The transduction efficiency and 2-LTR circle copy number of HIV-1 GFP vector were greatly diminished in human primary macrophages treated with the biased dN treatments, compared to the untreated macrophages. We also observed the induced dNTP bias blocked the production of infectious dual tropic HIV-1 89.6 in macrophages. Moreover, biochemical DNA synthesis by HIV-1 reverse transcriptase was significantly inhibited by the induced dNTP pool imbalance. Third, the induced dNTP bias increased the viral mutant rate by approximately 20-30% per a single cycle infection. Finally, unlike HIV-1, the single dN treatment did not significantly affect the transduction of SIVmac239-based GFP vector encoding Vpx in macrophages. This is likely due to Vpx, which can elevate all four dNTP levels even with the single dN treatment. CONCLUSION: Collectively, these data suggest that the elevated dNTP pool imbalance can induce kinetic block and mutation synthesis of HIV-1 in macrophages.


Asunto(s)
Desoxirribonucleótidos/farmacología , VIH-1/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Transcripción Reversa/efectos de los fármacos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Células Cultivadas , VIH-1/genética , Humanos , Cinética , Replicación Viral/efectos de los fármacos
18.
Antiviral Res ; 170: 104540, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247245

RESUMEN

Reverse transcriptase (RT) is an essential enzyme for the replication of retroviruses and hepadnaviruses. Current therapies do not eliminate the intracellular viral replication intermediate termed covalently closed circular (ccc) DNA, which has enhanced interest in hepatitis B virus (HBV) reverse transcription and cccDNA formation. The HBV cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (rc) DNA genome in incoming virions during HBV replication. The creation of the cccDNA via conversion from rcDNA remains not fully understood. Here, we sought to investigate whether viral mutagens can effect HBV replication. In particular, we investigated whether nucleoside analogs that act as viral mutagens with retroviruses could impact hepadnaviral DNA synthesis. We observed that a viral mutagen (e.g., 5-aza-2'-deoxycytidine, 5-aza-dC or 5-azacytidine, 5-aza-C) severely diminished the ability of a HBV vector to express a reporter gene following virus transfer and infection of target cells. As predicted, the treatment of 5-aza-dC or 5-aza-C elevated the HBV rcDNA mutation frequency, primarily by increasing the frequency of G-to-C transversion mutations. A reduction in rcDNA synthesis was also observed. Intriguingly, the cccDNA nick/gap region transcription was diminished by 5-aza-dC, but did not enhance viral mutagenesis. Taken together, our results demonstrate that viral mutagens can impact HBV reverse transcription, and propose a model in which viral mutagens can induce mutagenesis during rcDNA formation and diminish viral DNA synthesis during both rcDNA formation and the conversion of rcDNA to cccDNA.


Asunto(s)
Antivirales/farmacología , Replicación del ADN/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Mutagénesis , Nucleósidos/farmacología , Línea Celular , ADN Circular/genética , ADN Viral/genética , Células Hep G2 , Hepatocitos/virología , Humanos , Mutágenos/farmacología , Transcripción Reversa/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
19.
Subcell Biochem ; 88: E1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30488398

RESUMEN

In the original publication, the names of the second and third authors were incorrectly published.

20.
J Biol Chem ; 293(42): 16261-16276, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30217825

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Dimerización , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Nucleocápside/genética , Proteínas de Unión al ARN/fisiología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...