Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Chemother Pharmacol ; 89(6): 773-784, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460360

RESUMEN

PURPOSE: Pixantrone is a synthetic aza-anthracenedione currently used in the treatment of non-Hodgkin's lymphoma. The drug is firmly established as a poison of the nuclear enzyme topoisomerase II, however, pixantrone can also generate covalent drug-DNA adducts following activation by formaldehyde. While pixantrone-DNA adducts form proficiently in vitro, little evidence is presently at hand to indicate their existence within cells. The molecular nature of these lesions within cancer cells exposed to pixantrone and formaldehyde-releasing prodrugs was characterized along with the cellular responses to their formation. METHODS: In vitro crosslinking assays, [14C] scintillation counting analyses and alkaline comet assays were applied to characterize pixantrone-DNA adducts. Flow cytometry, cell growth inhibition and clonogenic assays were used to measure cancer cell kill and survival. RESULTS: Pixantrone-DNA adducts were not detectable in MCF-7 breast cancer cells exposed to [14C] pixantrone (10-40 µM) alone, however the addition of the formaldehyde-releasing prodrug AN9 yielded readily measurable levels of the lesion at ~ 1 adduct per 10 kb of genomic DNA. Co-administration with AN9 completely reversed topoisomerase II-associated DNA damage induction by pixantrone yet potentiated cell kill by the drug, suggesting that pixantrone-DNA adducts may promote a topoisomerase II-independent mechanism of cell death. Pixantrone-DNA adduct-forming treatments generally conferred mild synergism in multiple cell lines in various cell death and clonogenic assays, while pixantrone analogues either incapable or relatively defective in forming DNA adducts demonstrated antagonism when combined with AN9. CONCLUSIONS: The features unique to pixantrone-DNA adducts may be leveraged to enhance cancer cell kill and may be used to guide the design of pixantrone analogues that generate adducts with more favorable anticancer properties.


Asunto(s)
Neoplasias , Profármacos , Aductos de ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Formaldehído/farmacología , Humanos , Isoquinolinas , Profármacos/farmacología
2.
Sci Rep ; 5: 13241, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283179

RESUMEN

Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Supervivencia Celular/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Unión al GTP/metabolismo , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos
3.
J Med Chem ; 53(19): 6851-66, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20860366

RESUMEN

Mitoxantrone is an anticancer agent that acts as a topoisomerase II poison, however, it can also be activated by formaldehyde to form DNA adducts. Pixantrone, a 2-aza-anthracenedione with terminal primary amino groups in its side chains, forms formaldehyde-mediated adducts with DNA more efficiently than mitoxantrone. Molecular modeling studies indicated that extension of the "linker" region of anthracenedione side arms would allow the terminal primary amino greater flexibility and thus access to the guanine residues on the opposite DNA strand. New derivatives based on the pixantrone and mitoxantrone backbones were synthesized, and these incorporated primary amino groups as well as extended side chains. The stability of DNA adducts increased with increasing side chain length of the derivatives. A mitoxantrone derivative bearing extended side chains (7) formed the most stable adducts with ∼100-fold enhanced stability compared to mitoxantrone. This finding is of great interest because long-lived drug-DNA adducts are expected to perturb DNA-dependent functions at all stages of the cell cycle.


Asunto(s)
Antraquinonas/síntesis química , Antineoplásicos/síntesis química , Aductos de ADN/metabolismo , Profármacos/síntesis química , Antraquinonas/química , Antraquinonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Aductos de ADN/química , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , Ensayos de Selección de Medicamentos Antitumorales , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Formaldehído/química , Humanos , Concentración de Iones de Hidrógeno , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Mitoxantrona/análogos & derivados , Mitoxantrona/síntesis química , Mitoxantrona/química , Mitoxantrona/farmacología , Modelos Moleculares , Profármacos/química , Profármacos/farmacología , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
4.
Nucleic Acids Res ; 35(11): 3581-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17483512

RESUMEN

Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug-DNA adducts. Despite identification of this novel form of mitoxantrone-DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug-DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone-DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone-DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone-DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37 degrees C when compared to mitoxantrone-DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug-DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone-DNA adducts to be biologically active.


Asunto(s)
Antineoplásicos/química , Aductos de ADN/química , Formaldehído/farmacología , Isoquinolinas/química , Concentración de Iones de Hidrógeno , Cinética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA