Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35254402

RESUMEN

Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.


Asunto(s)
Acantosis Nigricans , Disostosis Craneofacial , Craneosinostosis , Acantosis Nigricans/complicaciones , Acantosis Nigricans/genética , Animales , Encéfalo , Disostosis Craneofacial/complicaciones , Disostosis Craneofacial/genética , Craneosinostosis/genética , Modelos Animales de Enfermedad , Trastornos de la Memoria/genética , Ratones , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
2.
Nat Protoc ; 15(12): 3777-3787, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106680

RESUMEN

The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.


Asunto(s)
COVID-19/genética , Modelos Animales de Enfermedad , Enzima Convertidora de Angiotensina 2/genética , Animales , Secuencia de Bases , Técnicas de Sustitución del Gen , Ingeniería Genética , Sitios Genéticos/genética , Ratones , Ratones Transgénicos , Mutación Puntual
3.
Development ; 147(13)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541002

RESUMEN

Pan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We have previously identified Slc26a9 as an otic placode-specific target of the FGFR2b ligands FGF3 and FGF10. We show here that Slc26a9 is otic specific through E10.5, but is not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5 to P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.


Asunto(s)
Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Antiportadores/genética , Antiportadores/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
4.
Development ; 145(24)2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30504125

RESUMEN

Morphogenesis of the inner ear epithelium requires coordinated deployment of several signaling pathways, and disruptions cause abnormalities of hearing and/or balance. The FGFR2b ligands FGF3 and FGF10 are expressed throughout otic development and are required individually for normal morphogenesis, but their prior and redundant roles in otic placode induction complicates investigation of subsequent combinatorial functions in morphogenesis. To interrogate these roles and identify new effectors of FGF3 and FGF10 signaling at the earliest stages of otic morphogenesis, we used conditional gene ablation after otic placode induction, and temporal inhibition of signaling with a secreted, dominant-negative FGFR2b ectodomain. We show that both ligands are required continuously after otocyst formation for maintenance of otic neuroblasts and for patterning and proliferation of the epithelium, leading to normal morphogenesis of both the cochlear and vestibular domains. Furthermore, the first genome-wide identification of proximal targets of FGFR2b signaling in the early otocyst reveals novel candidate genes for inner ear development and function.


Asunto(s)
Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Morfogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Doxiciclina/farmacología , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Ganglión/metabolismo , Regulación del Desarrollo de la Expresión Génica , Integrasas/metabolismo , Ligandos , Masculino , Ratones , Mutación/genética , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX2/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Vestíbulo del Laberinto/crecimiento & desarrollo , Vestíbulo del Laberinto/metabolismo
5.
Genome Biol ; 18(1): 92, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28511701

RESUMEN

BACKGROUND: Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. RESULTS: Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. CONCLUSIONS: Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Ratones Transgénicos/genética , Mutagénesis Insercional/métodos , Ribonucleoproteínas/genética , Animales , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Efecto Fundador , Genes Reporteros , Sitios Genéticos , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos/crecimiento & desarrollo , Microinyecciones , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación , Ribonucleoproteínas/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
6.
Dev Biol ; 420(1): 100-109, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720745

RESUMEN

During development of the inner ear, secreted morphogens act coordinately to establish otocyst dorsoventral polarity. Among these, Sonic hedgehog (SHH) plays a critical role in determining ventral polarity. However, how this extracellular signal is transduced intracellularly to establish ventral polarity is unknown. In this study, we show that cAMP dependent protein kinase A (PKA) is a key intracellular factor mediating SHH signaling through regulation of GLI3 processing. Gain-of-function experiments using targeted gene transfection by sonoporation or electroporation revealed that SHH signaling inactivates PKA, maintaining a basal level of PKA activity in the ventral otocyst. This, in turn, suppresses partial proteolytic processing of GLI3FL, resulting in a low GLI3R/GLI3FL ratio in the ventral otocyst and the expression of ventral-specific genes required for ventral otocyst morphogenesis. Thus, we identify a molecular mechanism that links extracellular and intracellular signaling, determines early ventral polarity of the inner ear, and has implications for understanding the integration of polarity signals in multiple organ rudiments regulated by gradients of signaling molecules.


Asunto(s)
Tipificación del Cuerpo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Oído Interno/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Transducción de Señal , Animales , Polaridad Celular , Pollos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Oído Interno/citología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Fosforilación
7.
Development ; 143(12): 2228-37, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27151948

RESUMEN

The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Animales , Pollos , Cóclea/embriología , Cóclea/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx/metabolismo , Procesamiento Proteico-Postraduccional , Canales Semicirculares/embriología , Canales Semicirculares/metabolismo , Proteínas Smad/metabolismo , Proteína Gli3 con Dedos de Zinc
8.
Dev Biol ; 400(1): 59-71, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25624266

RESUMEN

The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker׳s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10(-/+) embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10(-/-) embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner׳s membrane and a large portion of the outer sulcus-two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner׳s membrane as early as E12.5-E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner׳s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations.


Asunto(s)
Diferenciación Celular/fisiología , Cóclea/embriología , Epitelio/fisiología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Vestíbulo del Laberinto/embriología , Animales , Cóclea/citología , Hibridación in Situ , Ratones , Microscopía Fluorescente , Modelos Biológicos , Vestíbulo del Laberinto/citología
9.
Dev Dyn ; 243(9): 1143-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24812002

RESUMEN

BACKGROUND: The T-box transcription factor Tbx1, is essential for the normal development of multiple organ systems in the embryo. One of the most striking phenotypes in Tbx1-/- embryos is the failure of the caudal pharyngeal pouches to evaginate from the foregut endoderm. Despite considerable interest in the role of Tbx1 in development, the mechanisms whereby Tbx1 controls caudal pouch formation have remained elusive. In particular, the question as to how Tbx1 expression in the pharyngeal endoderm regulates pharyngeal pouch morphogenesis in the mouse embryo is not known. RESULTS: To address this question, we produced mouse embryos in which Tbx1 was specifically deleted from the pharyngeal endoderm and, as expected, embryos failed to form caudal pharyngeal pouches. To determine the molecular mechanism, we examined expression of Fgf3 and Fgf8 ligands and downstream effectors. Although Fgf8 expression is greatly reduced in Tbx1-deficient endoderm, FGF signaling levels are unaffected. Furthermore, pouch morphogenesis is only partially perturbed by the loss of both Fgf3 and Fgf8 from the endoderm, indicating that neither are required for pouch formation. CONCLUSIONS: Tbx1 deletion from the pharyngeal endoderm is sufficient to cause caudal pharyngeal arch segmentation defects by FGF-independent effectors that remain to be identified.


Asunto(s)
Región Branquial/embriología , Endodermo/metabolismo , Morfogénesis/genética , Faringe/embriología , Proteínas de Dominio T Box/metabolismo , Animales , Región Branquial/metabolismo , Endodermo/embriología , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Faringe/metabolismo , Proteínas de Dominio T Box/genética
10.
Genes Dev ; 27(21): 2320-31, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24145799

RESUMEN

The stereotyped arrangement of cochlear sensory and supporting cells is critical for auditory function. Our previous studies showed that Muenke syndrome model mice (Fgfr3P244R/+) have hearing loss associated with a supporting cell fate transformation of two Deiters' cells to two pillar cells. We investigated the developmental origins of this transformation and found that two prospective Deiters' cells switch to an outer pillar cell-like fate sequentially between embryonic day 17.5 (E17.5) and postnatal day 3 (P3). Unexpectedly, the Fgfr3P244R/+ hearing loss and supporting cell fate transformation are not rescued by genetically reducing fibroblast growth factor 8 (FGF8), the FGF receptor 3c (FGFR3c) ligand required for pillar cell differentiation. Rather, reducing FGF10, which normally activates FGFR2b or FGFR1b, is sufficient for rescue of cochlear form and function. Accordingly, we found that the P244R mutation changes the specificity of FGFR3b and FGFR3c such that both acquire responsiveness to FGF10. Moreover, Fgf10 heterozygosity does not block the Fgfr3P244R/+ supporting cell fate transformation but instead allows a gradual reversion of fate-switched cells toward the normal phenotype between P5 and at least P14. This study indicates that Deiters' and pillar cells can reversibly switch fates in an FGF-dependent manner over a prolonged period of time. This property might be exploited for the regulation of sensory cell regeneration from support cells.


Asunto(s)
Diferenciación Celular , Cóclea/citología , Cóclea/embriología , Craneosinostosis , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Pérdida Auditiva , Animales , Cóclea/metabolismo , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Craneosinostosis/genética , Modelos Animales de Enfermedad , Dosificación de Gen , Células Ciliadas Auditivas/citología , Pérdida Auditiva/embriología , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Ratones , Transducción de Señal
11.
Dev Biol ; 356(2): 383-97, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21664901

RESUMEN

Heart development requires contributions from, and coordinated signaling interactions between, several cell populations, including splanchnic and pharyngeal mesoderm, postotic neural crest and the proepicardium. Here we report that Fgf3 and Fgf10, which are expressed dynamically in and near these cardiovascular progenitors, have redundant and dosage sensitive requirements in multiple aspects of early murine cardiovascular development. Embryos with Fgf3(-/+);Fgf10(-/-), Fgf3(-/-);Fgf10(-/+) and Fgf3(-/-);Fgf10(-/-) genotypes formed an allelic series of increasing severity with respect to embryonic survival, with double mutants dead by E11.5. Morphologic analysis of embryos with three mutant alleles at E11.5-E13.5 and double mutants at E9.5-E11.0 revealed multiple cardiovascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricular myocardium, dorsal mesenchymal protrusion, pulmonary arteries, epicardium and fourth pharyngeal arch artery. Assessment of molecular markers in E8.0-E10.5 double mutants revealed abnormalities in each progenitor population, and suggests that Fgf3 and Fgf10 are not required for specification of cardiovascular progenitors, but rather for their normal developmental coordination. These results imply that coding or regulatory mutations in FGF3 or FGF10 could contribute to human congenital heart defects.


Asunto(s)
Vasos Coronarios/fisiología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Corazón/embriología , Neovascularización Fisiológica , Animales , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Ratones , Cresta Neural/anomalías , Embarazo , Proteínas de Dominio T Box/genética
12.
Dev Biol ; 347(2): 369-81, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20837004

RESUMEN

During development of the otocyst, regional morphogenesis establishes a dorsal vestibular chamber and a ventral auditory chamber, which collectively constitute the membranous labyrinth of the inner ear. We identified the earliest morphogenetic event heralding the formation of the vestibular chamber, a rapid thinning and expansion of the dorsolateral wall of the otocyst, and showed that this process is generated by changes in otocyst cell shape from columnar to squamous, as opposed to changes in other cell behaviors, such as localized changes in cell proliferation or cell death. Moreover, we showed that thinning and expansion of the dorsolateral otocyst is regulated by BMP/SMAD signaling, which is both sufficient and necessary for localized thinning and expansion. Finally, we showed that BMP/SMAD signaling causes fragmentation of E-cadherin in the dorsolateral otocyst, occurring concomitantly with cell shape change, suggesting that BMP/SMAD signaling regulates cell-cell adhesion during the initial morphogenesis of the otocyst epithelium. Collectively, our results show that BMP signaling via SMADs regulates the cell behaviors that drive the initial dorsal-specific morphogenesis of the otocyst, providing new information about how regional morphogenesis of a complex organ rudiment, the developing membranous labyrinth, is initiated.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Proteínas Smad/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Cadherinas/metabolismo , Proliferación Celular , Forma de la Célula , Cartilla de ADN/genética , Oído Interno/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Cobayas , Ratones , Morfogénesis , Embarazo , Transducción de Señal , Proteínas Smad/genética
13.
Dev Biol ; 340(2): 595-604, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20171206

RESUMEN

The inner ear epithelium, with its complex array of sensory, non-sensory, and neuronal cell types necessary for hearing and balance, is derived from a thickened patch of head ectoderm called the otic placode. Mouse embryos lacking both Fgf3 and Fgf10 fail to initiate inner ear development because appropriate patterns of gene expression fail to be specified within the pre-otic field. To understand the transcriptional "blueprint" initiating inner ear development, we used microarray analysis to identify prospective placode genes that were differentially expressed in control and Fgf3(-)(/)(-);Fgf10(-)(/)(-) embryos. Several genes in the down-regulated class, including Hmx3, Hmx2, Foxg1, Sox9, Has2, and Slc26a9 were validated by in situ hybridization. We also assayed candidate target genes suggested by other studies of otic induction. Two placode markers, Fgf4 and Foxi3, were down-regulated in Fgf3(-)(/)(-);Fgf10(-)(/)(-) embryos, whereas Foxi2, a cranial epidermis marker, was expanded in double mutants, similar to its behavior when WNT responses are blocked in the otic placode. Assays of hindbrain Wnt genes revealed that only Wnt8a was reduced or absent in FGF-deficient embryos, and that even some Fgf3(-)(/)(-);Fgf10(-)(/+) and Fgf3(-)(/)(-) embryos failed to express Wnt8a, suggesting a key role for Fgf3, and a secondary role for Fgf10, in Wnt8a expression. Chick explant assays showed that FGF3 or FGF4, but not FGF10, were sufficient to induce Wnt8a. Collectively, our results suggest that Wnt8a provides the link between FGF-induced formation of the pre-otic field and restriction of the otic placode to ectoderm adjacent to the hindbrain.


Asunto(s)
Oído/embriología , Inducción Embrionaria/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/fisiología , Animales , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Factor 10 de Crecimiento de Fibroblastos , Factor 3 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Rombencéfalo/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt
14.
Dev Dyn ; 238(8): 1999-2013, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19618463

RESUMEN

Fibroblast growth factor 10 (FGF10) signaling through FGF receptor 2 (FGFR2) is required for lung initiation. While studies indicate that Fgf10 and Fgfr2 are also important at later stages of lung development, their roles in early branching events remain unclear. We addressed this question through conditional inactivation of both genes in mouse subsequent to lung initiation. Inactivation of Fgf10 in lung mesenchyme resulted in smaller lobes with a reduced number of branches. Inactivation of Fgfr2 in lung epithelium resulted in disruption of lobes and small epithelial outgrowths that arose arbitrarily along the main bronchi. In both mutants, there was an increase in cell death. Also, the expression patterns of key signaling molecules implicated in branching morphogenesis were altered and a proximal lung marker was expanded distally. Our results indicate that both Fgf10 and Fgfr2 are required for a normal branching program and for proper proximal-distal patterning of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Pulmón/embriología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Muerte Celular/genética , Muerte Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Cartilla de ADN/genética , Epitelio/embriología , Epitelio/fisiología , Femenino , Factor 10 de Crecimiento de Fibroblastos/deficiencia , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Pulmón/anomalías , Pulmón/fisiología , Mesodermo/embriología , Mesodermo/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Transducción de Señal
15.
Hum Mol Genet ; 18(1): 43-50, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18818193

RESUMEN

The heterozygous Pro250Arg substitution mutation in fibroblast growth factor receptor 3 (FGFR3), which increases ligand-dependent signalling, is the most common genetic cause of craniosynostosis in humans and defines Muenke syndrome. Since FGF signalling plays dosage-sensitive roles in the differentiation of the auditory sensory epithelium, we evaluated hearing in a large group of Muenke syndrome subjects, as well as in the corresponding mouse model (Fgfr3(P244R)). The Muenke syndrome cohort showed significant, but incompletely penetrant, predominantly low-frequency sensorineural hearing loss, and the Fgfr3(P244R) mice showed dominant, fully penetrant hearing loss that was more severe than that in Muenke syndrome individuals, but had the same pattern of relative high-frequency sparing. The mouse hearing loss correlated with an alteration in the fate of supporting cells (Deiters'-to-pillar cells) along the entire length of the cochlear duct, with the most extreme abnormalities found at the apical or low-frequency end. In addition, there was excess outer hair cell development in the apical region. We conclude that low-frequency sensorineural hearing loss is a characteristic feature of Muenke syndrome and that the genetically equivalent mouse provides an excellent model that could be useful in testing hearing loss therapies aimed at manipulating the levels of FGF signalling in the inner ear.


Asunto(s)
Pérdida Auditiva/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Sustitución de Aminoácidos , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Oído Interno/metabolismo , Oído Interno/fisiopatología , Femenino , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Pruebas Auditivas , Humanos , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Transducción de Señal
16.
Dev Dyn ; 238(2): 358-66, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18773497

RESUMEN

Fibroblast growth factors play important roles in inner ear development. Previous studies showed that mouse Fgf16 is expressed asymmetrically during the otic cup and vesicle stages of development, suggesting roles in regulating or responding to anteroposterior axial cues. Here, we studied otic Fgf16 expression throughout embryonic development and found transcripts in the developing cristae and in a few cells in the lateral wall of the cochlear duct. To determine the otic function of Fgf16 and to follow the fate of Fgf16-expressing cells, we generated an Fgf16(IRESCre) allele. We show that Fgf16 does not have a unique role in inner ear development and that the Fgf16 lineage is found throughout the three cristae, in portions of the semicircular canal ducts, and in the cochlear spiral prominence epithelial cells. This strain will be useful for gene ablations in these tissues.


Asunto(s)
Oído Interno/embriología , Factores de Crecimiento de Fibroblastos/biosíntesis , Animales , Tipificación del Cuerpo , Linaje de la Célula/fisiología , Conducto Coclear/embriología , Conducto Coclear/metabolismo , Oído Interno/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Ratones Mutantes , Canales Semicirculares/embriología , Canales Semicirculares/metabolismo
17.
Dev Dyn ; 237(1): 163-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18058922

RESUMEN

The levels of fibroblast growth factor (FGF) signaling play important roles in coordinating development of the mouse inner, middle, and outer ears. Extracellular signal-regulated kinases (ERKs) are among the effectors that transduce the FGF signal to the nucleus and other cellular compartments. Attenuation of ERK activity by dephosphorylation is necessary to modulate the magnitude and duration of the FGF signal. Recently, we showed that inactivation of the ERK phosphatase, dual specificity phosphatase 6 (DUSP6), causes partially penetrant postnatal lethality, hearing loss and skeletal malformations. To determine whether other Dusps may function redundantly with Dusp6 during otic development, we surveyed the expression domains of the three ERK-specific DUSP transcripts, Dusp6, Dusp7, and Dusp9, in the embryonic mouse ear. We show that each is expressed in partially overlapping patterns that correspond to regions of active FGF signaling, suggesting combinatorial roles in negative regulation of this pathway during ear development.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/genética , Oído/embriología , Regulación del Desarrollo de la Expresión Génica , Animales , Oído Externo/embriología , Oído Externo/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Oído Medio/embriología , Oído Medio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Edad Gestacional , Hibridación in Situ , Ratones , Transducción de Señal/genética
18.
Development ; 134(20): 3615-25, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17855431

RESUMEN

The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.


Asunto(s)
Tipificación del Cuerpo , Oído Interno , Epitelio , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Morfogénesis , Animales , Biomarcadores/metabolismo , Oído Interno/anomalías , Oído Interno/citología , Oído Interno/embriología , Oído Interno/metabolismo , Epitelio/anatomía & histología , Epitelio/embriología , Epitelio/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A
19.
Development ; 134(1): 167-76, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17164422

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regulate, forming negative feedback loops that attenuate the signals. We show here that in mouse embryos, Fibroblast growth factor receptors (FGFRs) are required for transcription of Dusp6, which encodes MKP3, an extracellular signal-regulated kinase (ERK)-specific MKP. Targeted inactivation of Dusp6 increases levels of phosphorylated ERK, as well as the pERK target, Erm, and transcripts initiated from the Dusp6 promoter itself. Finally, the Dusp6 mutant allele causes variably penetrant, dominant postnatal lethality, skeletal dwarfism, coronal craniosynostosis and hearing loss; phenotypes that are also characteristic of mutations that activate FGFRs inappropriately. Taken together, these results show that DUSP6 serves in vivo as a negative feedback regulator of FGFR signaling and suggest that mutations in DUSP6 or related genes are candidates for causing or modifying unexplained cases of FGFR-like syndromes.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Alelos , Animales , Línea Celular , Fosfatasa 6 de Especificidad Dual , Embrión de Mamíferos , Células Madre Embrionarias/citología , Femenino , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Ratones , Ratones Endogámicos C57BL , Mutación , Embarazo , Proteínas Tirosina Fosfatasas/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transcripción Genética
20.
Genes Dev ; 19(5): 603-13, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15741321

RESUMEN

In both chick and mouse, the otic placode, the rudiment of the inner ear, is induced by at least two signals, one from the cephalic paraxial mesoderm and the other from the neural ectoderm. In chick, the mesodermal signal, FGF19, induces neural ectoderm to express additional signals, including WNT8c and FGF3, resulting in induction of the otic placode. In mouse, mesodermal Fgf10 acting redundantly with neural Fgf3 is required for induction of the placode. To determine how the mesodermal inducers of the otic placode are localized, we took advantage of the unique strengths of the two model organisms. We show that endoderm is necessary for otic induction in the chick and that Fgf8, expressed in the chick endoderm subjacent to Fgf19, is both sufficient and necessary for the expression of Fgf19 in the mesoderm. In the mouse, Fgf8 is also expressed in endoderm as well as in other germ layers in the periotic placode region. We show that otic induction fails in embryos null for Fgf3 and hypomorphic for Fgf8 and expression of mesodermal Fgf10 is reduced. Thus, Fgf8 plays a critical upstream role in an FGF signaling cascade required for otic induction in chick and mouse.


Asunto(s)
Oído Medio/embriología , Inducción Embrionaria/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Ectodermo/fisiología , Inducción Embrionaria/genética , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/fisiología , Ratones , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...