Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 133-139, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762859

RESUMEN

The self-complementary L-d(CGCGCG)2 purine/pyrimidine hexanucleotide was crystallized in complex with the polyamine cadaverine and potassium cations. Since the oligonucleotide contained the enantiomeric 2'-deoxy-L-ribose, the Z-DNA duplex is right-handed, as confirmed by the ultrahigh-resolution crystal structure determined at 0.69 Šresolution. Although the X-ray diffraction data were collected at a very short wavelength (0.7085 Å), where the anomalous signal of the P and K atoms is very weak, the signal was sufficiently outstanding to clearly indicate the wrong hand when the structure was mistakenly solved assuming the presence of 2'-deoxy-D-ribose. The electron density clearly shows the entire cadaverinium dication, which has an occupancy of 0.53 and interacts with one Z-DNA duplex. The K+ cation, with an occupancy of 0.32, has an irregular coordination sphere that is formed by three OP atoms of two symmetry-related Z-DNA duplexes and one O5' hydroxyl O atom, and is completed by three water sites, one of which is twofold disordered. The K+ site is complemented by a partial water molecule, the hydrogen bonds of which have the same lengths as the K-O bonds. The sugar-phosphate backbone assumes two conformations, but the base pairs do not show any sign of disorder.


Asunto(s)
ADN de Forma Z , Conformación de Ácido Nucleico , Modelos Moleculares , Difracción de Rayos X , Agua
2.
Front Microbiol ; 9: 505, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619018

RESUMEN

S-adenosyl-L-homocysteine (SAH) hydrolases (SAHases) are involved in the regulation of methylation reactions in many organisms and are thus crucial for numerous cellular functions. Consequently, their dysregulation is associated with severe health problems. The SAHase-catalyzed reaction is reversible and both directions depend on the redox activity of nicotinamide adenine dinucleotide (NAD+) as a cofactor. Therefore, nicotinamide cofactor biomimetics (NCB) are a promising tool to modulate SAHase activity. In the present in vitro study, we investigated 10 synthetic truncated NAD+ analogs against a SAHase from the root-nodulating bacterium Bradyrhizobium elkanii. Among this set of analogs, one was identified to inhibit the SAHase in both directions. Isothermal titration calorimetry (ITC) and crystallography experiments suggest that the inhibitory effect is not mediated by a direct interaction with the protein. Neither the apo-enzyme (i.e., deprived of the natural cofactor), nor the holo-enzyme (i.e., in the NAD+-bound state) were found to bind the inhibitor. Yet, enzyme kinetics point to a non-competitive inhibition mechanism, where the inhibitor acts on both, the enzyme and enzyme-SAH complex. Based on our experimental results, we hypothesize that the NCB inhibits the enzyme via oxidation of the enzyme-bound NADH, which may be accessible through an open molecular gate, leaving the enzyme stalled in a configuration with oxidized cofactor, where the reaction intermediate can be neither converted nor released. Since the reaction mechanism of SAHase is quite uncommon, this kind of inhibition could be a viable pharmacological route, with a low risk of off-target effects. The NCB presented in this work could be used as a template for the development of more potent SAHase inhibitors.

3.
IUCrJ ; 4(Pt 3): 271-282, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28512574

RESUMEN

S-Adenosyl-l-homocysteine hydrolase (SAHase) from the symbiotic bacterium Bradyrhizobium elkanii (BeSAHase) was crystallized in four ligand complexes with (i) mixed adenosine (Ado) and cordycepin (Cord; 3'-deoxyadenosine), (ii) adenine (Ade), (iii) Ado and (iv) mixed 2'-deoxyadenosine (2'-dAdo) and Ade. The crystal structures were solved at resolutions of 1.84, 1.95, 1.95 and 1.54 Å, respectively. Only the Ade complex crystallized with a dimer in the asymmetric unit, while all of the other complexes formed a crystallographically independent tetrameric assembly. In the Ado/Cord complex, adenosine is found in three subunits while the fourth subunit has cordycepin bound in the active site. In the Ade and Ado complexes only these ligand molecules are present in the active sites. The 2'-dAdo/Ade complex has Ade bound in two subunits and 2'-dAdo bound in the other two subunits. The BeSAHase fold adopted a closed conformation in the complexes with Ado, Ade and 2'-dAdo, and a semi-open conformation when cordycepin occupied the active site. An SAHase-specific molecular gate, consisting of residues His342 and Phe343, behaves differently in the different complexes, but there is no simple correlation with the ligand type. Additional small-angle X-ray scattering (SAXS) experiments confirm the tetrameric state of the protein in solution. The main conclusions from this work are (i) that the SAHase subunit does not simply oscillate between two discrete conformational open/closed states in correlation with the absence/presence of a ligand in the active site, but can also assume an intermediate form for some ligands; (ii) that the shut/open state of the molecular gate in the access channel to the active site is not correlated in a simple way with the open/closed subunit conformation or empty/occupied status of the active site, but that a variety of states are possible even for the same ligand; (iii) that a cation (typically sodium) coordinated in an intersubunit loop rigidifies a molecular hinge and thus stabilizes the closed conformation; (iv) that BeSAHase in solution is a tetramer, consistent with the model derived from crystallography.

4.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2422-32, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627650

RESUMEN

S-Adenosyl-L-homocysteine hydrolase (SAHase) is involved in the enzymatic regulation of S-adenosyl-L-methionine (SAM)-dependent methylation reactions. After methyl-group transfer from SAM, S-adenosyl-L-homocysteine (SAH) is formed as a byproduct, which in turn is hydrolyzed to adenosine (Ado) and homocysteine (Hcy) by SAHase. The crystal structure of BeSAHase, an SAHase from Bradyrhizobium elkanii, which is a nitrogen-fixing bacterial symbiont of legume plants, was determined at 1.7 Šresolution, showing the domain organization (substrate-binding domain, NAD(+) cofactor-binding domain and dimerization domain) of the subunits. The protein crystallized in its biologically relevant tetrameric form, with three subunits in a closed conformation enforced by complex formation with the Ado product of the enzymatic reaction. The fourth subunit is ligand-free and has an open conformation. The BeSAHase structure therefore provides a unique snapshot of the domain movement of the enzyme induced by the binding of its natural ligands.


Asunto(s)
Adenosilhomocisteinasa/química , Proteínas Bacterianas/química , Bradyrhizobium/química , NAD/química , Subunidades de Proteína/química , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Adenosina/química , Adenosina/metabolismo , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Bradyrhizobium/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Homocisteína/química , Homocisteína/metabolismo , Modelos Moleculares , NAD/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
5.
Acta Crystallogr C ; 66(Pt 10): o493-5, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20921613

RESUMEN

The crystal structures of the two title (E)-stilbazolium halogenates, C(20)H(17)ClNO(+)·Cl(-) and C(20)H(17)BrNO(+)·Br(-), are isomorphous, with an isostructurality index of 0.985. The azastyryl fragments are almost planar, with dihedral angles between the benzene and pyridine rings of ca 4.5°. The rings of the benzyl groups are, in turn, almost perpendicular to the azastyryl planes, with dihedral angles larger than 80°. The cations and anions are connected by O-H...X(-) (X = halogen) hydrogen bonds. The halide anions are `sandwiched' between the charged pyridinium rings of neighbouring molecules, and weak C-H...O hydrogen bonds and C-H...X and C-H...π interactions also contribute to the crystal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA