Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cells ; 10(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34571960

RESUMEN

Meiosis involves a series of specific chromosome events, namely homologous synapsis, recombination, and segregation. Disruption of either recombination or synapsis in mammals results in the interruption of meiosis progression during the first meiotic prophase. This is usually accompanied by a defective transcriptional inactivation of the X and Y chromosomes, which triggers a meiosis breakdown in many mutant models. However, epigenetic changes and transcriptional regulation are also expected to affect autosomes. In this work, we studied the dynamics of epigenetic markers related to chromatin silencing, transcriptional regulation, and meiotic sex chromosome inactivation throughout meiosis in knockout mice for genes encoding for recombination proteins SPO11, DMC1, HOP2 and MLH1, and the synaptonemal complex proteins SYCP1 and SYCP3. These models are defective in recombination and/or synapsis and promote apoptosis at different stages of progression. Our results indicate that impairment of recombination and synapsis alter the dynamics and localization pattern of epigenetic marks, as well as the transcriptional regulation of both autosomes and sex chromosomes throughout prophase-I progression. We also observed that the morphological progression of spermatocytes throughout meiosis and the dynamics of epigenetic marks are processes that can be desynchronized upon synapsis or recombination alteration. Moreover, we detected an overlap of early and late epigenetic signatures in most mutants, indicating that the normal epigenetic transitions are disrupted. This can alter the transcriptional shift that occurs in spermatocytes in mid prophase-I and suggest that the epigenetic regulation of sex chromosomes, but also of autosomes, is an important factor in the impairment of meiosis progression in mammals.


Asunto(s)
Emparejamiento Cromosómico/genética , Epigénesis Genética/genética , Mamíferos/genética , Meiosis/genética , Proteínas Recombinantes/genética , Recombinación Genética/genética , Animales , Apoptosis/genética , Marcadores Genéticos/genética , Masculino , Ratones , Cromosomas Sexuales/genética , Espermatocitos/fisiología , Transcripción Genética/genética
2.
Front Immunol ; 12: 658551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054822

RESUMEN

What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.


Asunto(s)
Conducta , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Patrón de Herencia , Animales , Biomarcadores , Citocinas/metabolismo , Ambiente , Epigénesis Genética , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Antecedentes Genéticos , Células Germinativas/metabolismo , ARN/genética , Transducción de Señal
3.
Mol Reprod Dev ; 88(2): 141-157, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33469999

RESUMEN

BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.


Asunto(s)
Epigenómica , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/fisiología , Espermatogénesis/genética , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , ADN/metabolismo , Masculino , Meiosis/genética , Meiosis/fisiología , Ratones , Regiones Promotoras Genéticas , Espermátides/fisiología , Espermatogénesis/fisiología
4.
J Mol Biol ; 432(10): 3222-3238, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198114

RESUMEN

Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.


Asunto(s)
Centrómero/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Histonas/metabolismo , Metaloproteinasas de la Matriz Secretadas/genética , Proteínas Proto-Oncogénicas/metabolismo , Acetilación , Animales , Células Cultivadas , Centrómero/metabolismo , Regulación hacia Abajo , Fibroblastos/metabolismo , Metaloproteinasa 10 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/genética , Metilación , Ratones , Mitosis , Regiones Promotoras Genéticas , Activación Transcripcional
5.
Clin Epigenetics ; 12(1): 32, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070418

RESUMEN

BACKGROUND: Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). RESULTS: Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. CONCLUSIONS: Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD.


Asunto(s)
Proteína C9orf72/metabolismo , Disfunción Cognitiva/genética , Epigénesis Genética/genética , Histonas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Metilación de ADN/genética , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Expresión Génica , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transcriptoma/genética
6.
PLoS Genet ; 14(3): e1007209, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29513658

RESUMEN

The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis. In contrast, complete loss of BRDT blocks the progression of spermatocytes into the first meiotic division, resulting in a complete absence of post-meiotic cells. Although BRDT has been implicated in chromatin remodeling and mRNA processing during spermiogenesis, little is known about its role in meiotic processes. Here we report that BRDT is an essential regulator of chromatin organization and reprograming during prophase I of meiosis. Loss of BRDT function disrupts the epigenetic state of the meiotic sex chromosome inactivation in spermatocytes, affecting the synapsis and silencing of the X and Y chromosomes. We also found that BRDT controls the global chromatin organization and histone modifications of the chromatin attached to the synaptonemal complex. Furthermore, the homeostasis of crossover formation and localization during pachynema was altered, underlining a possible epigenetic mechanism by which crossovers are regulated and differentially established in mammalian male genomes. Our observations reveal novel findings about the function of BRDT in meiosis and provide insight into how epigenetic regulators modulate the progression of male mammalian meiosis and the formation of haploid gametes.


Asunto(s)
Cromatina/genética , Epigénesis Genética/genética , Meiosis/fisiología , Proteínas Nucleares/genética , Cromosomas Sexuales/genética , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Emparejamiento Cromosómico/genética , Intercambio Genético , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Infertilidad Masculina/genética , Masculino , Ratones Noqueados , Proteínas Nucleares/metabolismo , Espermatocitos/patología , Espermatocitos/fisiología , Testículo/citología , Testículo/fisiología
7.
PLoS One ; 12(3): e0173926, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301569

RESUMEN

Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Apoptosis , Ciclina A1/genética , Meiosis , Transducción de Señal , Espermatocitos/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Chromosoma ; 125(2): 253-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26712234

RESUMEN

We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.


Asunto(s)
Ciclina E/metabolismo , Ciclinas/metabolismo , Meiosis , Proteínas Oncogénicas/metabolismo , Espermatocitos/citología , Telómero/metabolismo , Animales , Ciclina E/genética , Ciclinas/genética , Daño del ADN , Reparación del ADN , Femenino , Masculino , Ratones , Proteínas Oncogénicas/genética , Fase Paquiteno , Espermatocitos/metabolismo , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
9.
Biol Res ; 47: 16, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25027603

RESUMEN

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. RESULTS: In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. CONCLUSIONS: The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.


Asunto(s)
Núcleo Celular/genética , Cromosomas de los Mamíferos/ultraestructura , Profase Meiótica I , Espermatocitos/ultraestructura , Animales , Núcleo Celular/diagnóstico por imagen , Heterocromatina , Heterocigoto , Homocigoto , Hibridación Fluorescente in Situ , Masculino , Ratones , Sondas Moleculares , Fase Paquiteno , Fracciones Subcelulares , Ultrasonografía
10.
Genetics ; 197(4): 1137-51, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907260

RESUMEN

Telomeric DNA repeats are key features of chromosomes that allow the maintenance of integrity and stability in the telomeres. However, interstitial telomere sites (ITSs) can also be found along the chromosomes, especially near the centromere, where they may appear following chromosomal rearrangements like Robertsonian translocations. There is no defined role for ITSs, but they are linked to DNA damage-prone sites. We were interested in studying the structural organization of ITSs during meiosis, a kind of cell division in which programmed DNA damage events and noticeable chromatin reorganizations occur. Here we describe the presence of highly amplified ITSs in the pericentromeric region of Mongolian gerbil (Meriones unguiculatus) chromosomes. During meiosis, ITSs show a different chromatin conformation than DNA repeats at telomeres, appearing more extended and accumulating heterochromatin markers. Interestingly, ITSs also recruit the telomeric proteins RAP1 and TRF1, but in a stage-dependent manner, appearing mainly at late prophase I stages. We did not find a specific accumulation of DNA repair factors to the ITSs, such as γH2AX or RAD51 at these stages, but we could detect the presence of MLH1, a marker for reciprocal recombination. However, contrary to previous reports, we did not find a specific accumulation of crossovers at ITSs. Intriguingly, some centromeric regions of metacentric chromosomes may bind the nuclear envelope through the association to SUN1 protein, a feature usually performed by telomeres. Therefore, ITSs present a particular and dynamic chromatin configuration in meiosis, which could be involved in maintaining their genetic stability, but they additionally retain some features of distal telomeres, provided by their capability to associate to telomere-binding proteins.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Gerbillinae/genética , Meiosis/genética , Telómero/genética , Animales , Ciclo Celular , División Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/metabolismo , Reparación del ADN , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Membrana Nuclear/genética , Recombinación Genética , Telómero/metabolismo
11.
PLoS Genet ; 10(2): e1004165, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586195

RESUMEN

Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.


Asunto(s)
Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/genética , Ciclinas/biosíntesis , Proteínas Oncogénicas/genética , Animales , Emparejamiento Cromosómico/genética , Ciclina E/biosíntesis , Quinasa 2 Dependiente de la Ciclina/metabolismo , Ciclinas/genética , Roturas del ADN de Doble Cadena , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Meiosis , Ratones , Proteínas Oncogénicas/biosíntesis , Espermatocitos/metabolismo , Espermatogénesis/genética , Telómero/genética , Testículo/metabolismo
12.
Biol. Res ; 47: 1-13, 2014. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-950712

RESUMEN

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. RESULTS: In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. CONCLUSIONS: The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.


Asunto(s)
Animales , Masculino , Ratones , Espermatocitos/ultraestructura , Núcleo Celular/genética , Cromosomas de los Mamíferos/ultraestructura , Profase Meiótica I , Fracciones Subcelulares , Heterocromatina , Sondas Moleculares , Núcleo Celular , Ultrasonografía , Hibridación Fluorescente in Situ , Fase Paquiteno , Heterocigoto , Homocigoto
13.
Int J Dev Biol ; 57(2-4): 159-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23784826

RESUMEN

Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique functions for the cyclins. This review will summarize our current understanding of cyclin expression and function in the male germ line, with particular focus on the A and E type cyclins in the mouse model. While the focus is on mammalian spermatogenesis, we note contrasts with similar functions in the female germ line when relevant and also draw upon observations in other model systems to provide further insight.


Asunto(s)
Ciclo Celular/fisiología , Ciclinas/metabolismo , Células Germinativas/citología , Espermatogénesis/fisiología , Animales , Femenino , Células Germinativas/metabolismo , Humanos , Masculino , Ratones
14.
Chromosoma ; 121(3): 307-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22366883

RESUMEN

During the first meiotic prophase in male mammals, sex chromosomes undergo a program of transcriptional silencing called meiotic sex chromosome inactivation (MSCI). MSCI is triggered by accumulation of proteins like BRCA1, ATR, and γH2AX on unsynapsed chromosomes, followed by local changes on the sex chromatin, including histone modifications, incorporation of specific histone variants, non-histone proteins, and RNAs. It is generally thought that MSCI represents the transition of unsynapsed chromatin from a transcriptionally active state to a repressed state. However, transcription is generally low in the whole nucleus during the early stages of the first meiotic prophase, when markers of MSCI first appear, and is then reactivated globally during pachytene. Thus, an alternative possibility is that MSCI represents the targeted maintenance and/or reinforcement of a prior repressed state, i.e., a failure to reactivate. Here, we present an analysis of the temporal and spatial appearance of transcriptional and MSCI markers, as well as chromatin modifications related to transcriptional regulation. We show that levels of RNA pol II and histone H3 acetylated at lysine 9 (H3K9ac) are low during leptotene, zygotene, and early pachytene, but increase strongly in mid-pachytene, indicating that reactivation occurs with some delay after synapsis. However, while transcription markers appear abundantly on the autosomes at mid-pachytene, they are not directed to the sex chromosomes. Interestingly, we found that chromatin modifications related to transcriptional silencing and/or MSCI, namely, histone H3 trimethylated at lysine 9 (H3K9me3), histone H3 monomethylated at lysine 4 (H3K4me1), γH2AX, SUMO1, and XMR, appear on the sex chromosomes before autosomes become reactivated. These results suggest that the onset of MSCI during late zygotene and early pachytene may prevent sex chromosome reactivation during mid-pachytene instead of promoting inactivation de novo. Additionally, we found temporal differences between the X and Y chromosomes in the recruitment of DNA repair and MSCI markers, indicating a differential regulation of these processes. We propose that many of the meiotic defects attributed to failure to silence sex chromosomes could be interpreted as a more general process of transcriptional misregulation that occurs under certain pathological circumstances in zygotene and early pachytene.


Asunto(s)
Silenciador del Gen , Profase Meiótica I/genética , Cromosoma X/metabolismo , Cromosoma Y/metabolismo , Animales , Proteínas Portadoras , Proteínas de Ciclo Celular , Cromatina/metabolismo , Emparejamiento Cromosómico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN , Histonas/metabolismo , Masculino , Ratones , Proteínas Nucleares/metabolismo , Fase Paquiteno/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN , Proteína SUMO-1/metabolismo , Transcripción Genética
15.
Chromosome Res ; 20(2): 269-78, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22231503

RESUMEN

The house mouse is characterised by highly variable chromosome number due to the presence of Robertsonian (Rb) chromosomes. During meiosis in Rb heterozygotes, intricated chromosomal figures are produced, and many unsynapsed regions are present during the first prophase, triggering a meiotic silencing of unsynapsed chromatin (MSUC) in a similar mode to the sex chromosome inactivation. The presence of unsynapsed chromosome regions is associated with impaired spermatogenesis. Interestingly, in male mice carrying multiple Rb trivalents, the frequency of germ cell death, defective tubules, and altered sperm morphology decreases during aging. Here, we studied whether synapsis of trivalent chromosomes and MSUC are involved in this improvement. By immunocytochemistry, we analysed the frequency of unsynapsed chromosomes and of those positive to γH2AX (a marker of MSUC) labelling in spermatocytes of 3-, 5- and 7-month-old Rb heterozygotes. With aging, we observed a decrease of the frequency of unsynapsed chromosomes, of spermatocytes bearing them and of trivalents carrying γH2AX-negative unsynapsed regions. Our quantitative results show that both synapsis and MSUC processes are better accomplished during male aging, partially accounting for the improvement of spermatogenesis.


Asunto(s)
Envejecimiento/genética , Emparejamiento Cromosómico , Heterocigoto , Translocación Genética , Animales , Masculino , Ratones , Cromosomas Sexuales , Espermatocitos/metabolismo
16.
Biol Res ; 43(3): 275-85, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21249298

RESUMEN

Understanding the spatial organization of the chromosomes in meiotic nuclei is crucial to our knowledge of the genome's functional regulation, stability and evolution. This study examined the nuclear architecture of Mus domesticus 2n=40 pachytene spermatocytes, analyzing the associations among autosomal bivalents via their Centromere Telomere Complexes (CTC). The study developed a nuclear model in which each CTC was represented as a 3D computer object. The probability of a given combination of associations among CTC was estimated by simulating a random distribution of 19 indistinguishable CTC over n indistinguishable "cells" on the nuclear envelope. The estimated association frequencies resulting from this numerical approach were similar to those obtained by quantifying actual associations in pachytene spermatocyte spreads. The nuclear localization and associations of CTC through the meiotic prophase in well-preserved nuclei were also analyzed. We concluded that throughout the meiotic prophase: 1) the CTC of autosomal bivalents are not randomly distributed in the nuclear space; 2) the CTC associate amongst themselves, probably at random, over a small surface of the nuclear envelope, at the beginning of the meiotic prophase; 3) the initial aggregation of centromere regions occurring in lepto-zygotene likely resolves into several smaller aggregates according to patterns of preferential partitioning; 4) these smaller aggregates spread over the inner face of the nuclear envelope, remaining stable until advanced stages of the meiotic prophase or even until the first meiotic division.


Asunto(s)
Núcleo Celular/ultraestructura , Cromosomas de los Mamíferos/ultraestructura , Espermatocitos/ultraestructura , Animales , Centrómero/ultraestructura , Masculino , Profase Meiótica I/fisiología , Ratones , Modelos Biológicos , Membrana Nuclear/ultraestructura , Telómero/ultraestructura
17.
Biol. Res ; 43(3): 275-285, 2010. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-571988

RESUMEN

Understanding the spatial organization of the chromosomes in meiotic nuclei is crucial to our knowledge of the genome's functional regulation, stability and evolution. This study examined the nuclear architecture of Mus domesticus 2n=40 pachytene spermatocytes, analyzing the associations among autosomal bivalents via their Centromere Telomere Complexes (CTC). The study developed a nuclear model in which each CTC was represented as a 3D computer object. The probability of a given combination of associations among CTC was estimated by simulating a random distribution of 19 indistinguishable CTC over n indistinguishable "cells" on the nuclear envelope. The estimated association frequencies resulting from this numerical approach were similar to those obtained by quantifying actual associations in pachytene spermatocyte spreads. The nuclear localization and associations of CTC through the meiotic prophase in well-preserved nuclei were also analyzed. We concluded that throughout the meiotic prophase: 1) the CTC of autosomal bivalents are not randomly distributed in the nuclear space; 2) the CTC associate amongst themselves, probably at random, over a small surface of the nuclear envelope, at the beginning of the meiotic prophase; 3) the initial aggregation of centromere regions occurring in lepto-zygotene likely resolves into several smaller aggregates according to patterns of preferential partitioning; 4) these smaller aggregates spread over the inner face of the nuclear envelope, remaining stable until advanced stages of the meiotic prophase or even until the first meiotic division.


Asunto(s)
Animales , Masculino , Ratones , Núcleo Celular/ultraestructura , Cromosomas de los Mamíferos/ultraestructura , Espermatocitos/ultraestructura , Centrómero/ultraestructura , Modelos Biológicos , Profase Meiótica I/fisiología , Membrana Nuclear/ultraestructura , Telómero/ultraestructura
18.
PLoS Genet ; 5(8): e1000625, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19714216

RESUMEN

Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.


Asunto(s)
Cromatina/metabolismo , Emparejamiento Cromosómico , Silenciador del Gen , Meiosis , Espermatocitos/citología , Translocación Genética , Animales , Femenino , Heterocigoto , Masculino , Ratones , Fase Paquiteno , Espermatocitos/metabolismo
19.
Genetica ; 121(3): 219-28, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15521420

RESUMEN

In seven mammalian species, including man, the position and number of nucleoli in pachytene spermatocyte nuclei were studied from electron microscope (EM) nuclear sections or bivalent microspreads. The number and position of the nucleolar organiser regions (NORs) in mitotic and meiotic chromosomes were also analysed, using silver staining techniques and in situ hybridisation protocols. The general organisation of pachytene spermatocyte nucleoli was almost the same, with only minor morphological differences between species. The terminal NORs of Thylamys elegans (Didelphoidea, Marsupialia), Dromiciops gliroides (Microbiotheridae, Marsupialia), Phyllotys osgoodi (Rodentia, Muridae) and man, always gave rise to peripheral nucleoli in the spermatocyte nucleus. In turn, the intercalated NORs from Octodon degus, Ctenomys opimus (Rodentia, Octodontidae) and Chinchilla lanigera (Rodentia, Cavidae), gave rise to central nucleoli. In species with a single nucleolar bivalent, just one nucleolus is formed, while in those with multiple nucleolar bivalents a variable number of nucleoli are formed by association of different nucleolar bivalents or NORs that occupy the same nuclear peripheral space (Phyllotis and man). It can be concluded that the position of each nucleolus within the spermatocyte nucleus is mainly dependent upon: (1) the position of the NOR in the nucleolar bivalent synaptonemal complex (SC), (2) the nuclear pathway of the nucleolar bivalent SC, being both telomeric ends attached to the nuclear envelope, and (3) the association between nucleolar bivalents by means of their NOR-nucleolar domains that occupy the same nuclear space. Thus, the distribution of nucleoli within the nuclear space of spermatocytes is non-random and it is consistent with the existence of a species-specific meiotic nuclear architecture.


Asunto(s)
Nucléolo Celular , Cromosomas de los Mamíferos/ultraestructura , Mamíferos/genética , Región Organizadora del Nucléolo/ultraestructura , Espermatocitos/citología , Animales , Humanos , Masculino , Microscopía Electrónica , Profase/genética , Tinción con Nitrato de Plata , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...