Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci ; 294: 120334, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065161

RESUMEN

AIMS: Imidazo[1,2-a]pyridine-based analogues have recently gained significant interest because of their wide spectrum of biological activities including anti-cancer potential, however the development of targeted therapeutic candidates against non-small cell lung cancer (NSCLC) is of utmost need due to its high prevalence and poor prognosis. Herein, we have aimed to synthesized novel imidazo [1,2-a] pyridine derivatives (IMPA) by coupling with 2-amino-4H-pyran to enhance bioactivity against NSCLC. MAIN METHODS: We have designed and synthesized a series of fifteen novel imidazo [1,2-a] pyridine derivatives through molecular hybridization and studied their anti-cancer activity against in-vitro lung adenocarcinoma and 3D multicellular lung tumor spheroids. KEY FINDINGS: IMPA-2, IMPA-5, IMPA-6, IMPA-8, and IMPA-12 markedly induced cytotoxicity by notably increased NADPH oxidase (NOX) activity, which results in the induction of ROS-mediated apoptosis in A549 lung cancer cells. It caused impairment of mitochondrial membrane potential by increasing pro-apoptotic BAX, and BAK1 expressions, and decreasing anti-apoptotic BCL2 expression, along with the induction of caspase-9/3 activation, however, these attributes were compromised in presence of N-acetyl-L-cysteine (NAC), a free radical scavenger. Increased ROS production by IMPAs also promotes p53 mediated cell cycle arrest through the inactivation of p38MAPK. Reduction of tumor size in IMPAs-treated 3D multicellular lung tumor spheroids gave further validation. SIGNIFICANCE: Beside cytotoxicity, IMPAs also inhibit lung cancer cell invasion and migration, suggesting their applicability in metastatic lung cancer. Therefore, IMPA derivatives could be used as potential anti-cancer agents in treating non-small cell lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular , Neoplasias Pulmonares/patología , Estrés Oxidativo , Piridinas/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Antineoplásicos/química , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Humanos , Imidazoles/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial , Piridinas/química , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Curr Pharm Des ; 26(35): 4386-4409, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32445444

RESUMEN

Dengue virus (DENV) infection threatens the health and wellbeing of almost 100 million people in the world. Vectored by mosquitoes, DENV may cause a severe disease in human hosts called Dengue hemorrhagic fever (DHF)/Dengue shock syndrome (DSS), which is not preventable by any known drug. In the absence of a universally-accepted vaccine, a drug capable of inhibiting DENV multiplication is an urgent and unmet clinical need. Here we summarize inhibitory strategies by targeting either host biochemical pathways or virus-encoded proteins. A variety of approaches have been generated to design Directly-acting anti-virals or DAAs targeting different DENV proteins, with diverse success. Among them, DAAs targeting genome replicating viral enzymes have proven effective against many viruses including, Human Immuno-deficiency Virus and Hepatitis C Virus. DAAs may be derived either from existing compound libraries of novel molecules and plant secondary metabolites or devised through Computer-aided Drug design (CADD) methods. Here, we focus on compounds with reported DAA-activity against the DENV RNA-dependent RNA polymerase (RdRp), which replicate the viral RNA genome. The structure-activity relationship (SAR) and toxicity of the natural compounds, including secondary plant metabolites, have been discussed in detail. We have also tabulated novel compounds with known anti-RdRp activity. We concluded with a list of DAAs for which a co-crystal structure with RdRp is reported. Promising hit compounds are often discarded due to poor selectivity or unsuitable pharmacokinetics. We hope this review will provide a useful reference for further studies on the development of an anti-DENV drug.


Asunto(s)
Antivirales , Virus del Dengue , Dengue , Hepatitis C Crónica , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , ARN Polimerasas Dirigidas por ADN/uso terapéutico , Descubrimiento de Drogas , Humanos , ARN Polimerasa Dependiente del ARN/genética
3.
Bioorg Med Chem Lett ; 29(16): 2248-2253, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31239178

RESUMEN

Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a-i, 11a-g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines. Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and ß-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of ß-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Piperazina/farmacología , Pirimidinas/farmacología , Células A549 , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Piperazina/síntesis química , Piperazina/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA