Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 161: 114540, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36934557

RESUMEN

Diabetic wound (DW) is the most devastating complication resulting in significant mortality and morbidity in diabetic patients. The standard treatment of DW care fails to address the prerequisites of treating DW owing to its multifactorial pathophysiology. Henceforth, developing a single treatment strategy to handle all the loopholes may effectively manage DW. The objective of the current study was to formulate Human beta defensin-2 (HBD-2) loaded Poly (lactic-co-glycolic acid) (PLGA) nanoparticle impregnated in collagen/chitosan (COL-CS) composite scaffolds for the accelerated healing of DW. Upon investigation, the developed biodegradable crosslinked scaffold possesses low matrix degradation, optimum porosity, and sustained drug release than the non-crosslinked scaffold. In vitro studies revealed that the HBD-2 COL-CS scaffold was biocompatible and accelerated cell migration and angiogenesis. The HBD-2 COL-CS scaffold showed significant antimicrobial activity in S. aureus, E. coli, and P. aeruginosa. The in vivo studies revealed that the HBD-2 COL-CS treated group accelerated healing compared to those in COL-CS and control groups. The ELISA results indicated a significant decrease in MMP-9, TNF-α, MPO, NAG, and NO with an increase in IL-10 in HBD-2 COL-CS treated group. The accelerated healing in HBD-2 COL-CS treated group might be due to the synergistic effects of PLGA (collagen synthesis and deposition and positive angiogenic effect), HBD-2 (anti-inflammatory, antibacterial, positive angiogenic effect, cell proliferation, and migration), COL (established wound healer and stabilizer) and CS (antibacterial, controlled drug release).


Asunto(s)
Quitosano , Diabetes Mellitus , Nanopartículas , beta-Defensinas , Humanos , Andamios del Tejido , Staphylococcus aureus , Escherichia coli , Colágeno/farmacología , Antibacterianos/farmacología
2.
Comput Struct Biotechnol J ; 19: 4517-4537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471497

RESUMEN

The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer's disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 - 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 - 38.84 ± 9.64 µM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.

3.
Pharmaceutics ; 13(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34452143

RESUMEN

The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.

4.
Biomed Pharmacother ; 142: 111946, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34339915

RESUMEN

The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Cicatrización de Heridas/fisiología , Animales , Humanos , Mamíferos , Roedores , Investigación Biomédica Traslacional/métodos
5.
Int J Nanomedicine ; 16: 4209-4224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34188470

RESUMEN

BACKGROUND AND PURPOSE: Strontium ranelate (SrR) is an oral pharmaceutical agent for osteoporosis. In recent years, numerous unwanted side effects of oral SrR have been revealed. Therefore, its clinical administration and applications are limited. Hereby, this study aims to develop, formulate, and characterize an effective SrR carrier system for spinal bone regeneration. METHODS: Herein, glycol chitosan with hyaluronic acid (HA)-based nanoformulation was used to encapsulate SrR nanoparticles (SrRNPs) through electrostatic interaction. Afterward, the poly(ethylene glycol) diacrylate (PEGDA)-based hydrogels were used to encapsulate pre-synthesized SrRNPs (SrRNPs-H). The scanning electron microscope (SEM), TEM, rheometer, Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) were used to characterize prepared formulations. The rabbit osteoblast and a rat spinal decortication models were used to evaluate and assess the developed formulation biocompatibility and therapeutic efficacy. RESULTS: In vitro and in vivo studies for cytotoxicity and bone regeneration were conducted. The cell viability test showed that SrRNPs exerted no cytotoxic effects in osteoblast in vitro. Furthermore, in vivo analysis for new bone regeneration mechanism was carried out on rat decortication models. Radiographical and histological analysis suggested a higher level of bone regeneration in the SrRNPs-H-implanted groups than in the other experimental groups. CONCLUSION: Local administration of the newly developed formulated SrR could be a promising alternative therapy to enhance bone regeneration in bone-defect sites in future clinical applications.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Portadores de Fármacos/química , Ácido Hialurónico/química , Nanopartículas/química , Polietilenglicoles/química , Columna Vertebral/fisiología , Tiofenos/administración & dosificación , Tiofenos/farmacología , Animales , Comunicación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacología , Hidrogeles/química , Masculino , Nanopartículas/ultraestructura , Tamaño de la Partícula , Conejos , Ratas Wistar , Columna Vertebral/efectos de los fármacos
6.
Int J Biol Macromol ; 150: 631-636, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061845

RESUMEN

The present research reports the beneficial effects of surface modified chitosan and tumor-homing peptide conjugated liposomes of capecitabine (CAP) for treating breast cancer. Liposomal formulation of CAP was prepared by film hydration method using cholesterol-THP conjugate (CTHP-CAP-LPs) to achieve active targeting through HER2 receptors. CTHP-CAP-LPs significantly improved the specificity and efficacy of CAP by improving cell uptake, cytotoxicity and tumor regression in tumor bearing mice. CTHP-CAP-LPs, therefore, is a promising approach to improve the anticancer effects of CAP.


Asunto(s)
Antimetabolitos Antineoplásicos , Neoplasias de la Mama , Quitosano , Péptidos , Receptor ErbB-2 , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Capecitabina/química , Capecitabina/farmacología , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacología , Femenino , Humanos , Liposomas , Péptidos/química , Péptidos/farmacología , Receptor ErbB-2/agonistas , Receptor ErbB-2/metabolismo
7.
ACS Appl Mater Interfaces ; 12(1): 86-95, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31809008

RESUMEN

Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell-material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery.


Asunto(s)
Cartílago/lesiones , Gelatina , Grafito , Hidrogeles , Procedimientos de Cirugía Plástica , Ingeniería de Tejidos , Animales , Cartílago/metabolismo , Cartílago/cirugía , Gelatina/química , Gelatina/farmacología , Grafito/química , Grafito/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Gases em Plasma/química , Ratas
8.
RSC Adv ; 9(43): 24987-24994, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35528678

RESUMEN

In the present study, we have formulated a liposomal formulation of cytotoxic agent capecitabine (CAP) to overcome its bioavailability issues. Then we have surface modified CAP loaded liposomes (CAP-LPs) with a tumour homing peptide (THP-CAP-LPs) to achieve site specific delivery to breast cancer cells. We found a significant cellular internalization of THP-CAP-LPs when compared to unmodified CAP-LPs. The cytotoxic effect of CAP was also significantly improved with THP-CAP-LPs by downregulating anti-apoptotic proteins and upregulating pro-apoptotic proteins as observed by Western blot analysis. THP-CAP-LPs mediated delivery of CAP can be, therefore, a promising approach for improving antitumor activity and reducing off-target effects.

9.
Molecules ; 23(6)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29795044

RESUMEN

The introduction and designing of functional thermoresponsive hydrogels have been recommended as recent potential therapeutic approaches for biomedical applications. The development of bioactive materials such as thermosensitive gelatin-incorporated nano-organic materials with a porous structure and photothermally triggerable and cell adhesion properties may potentially achieve this goal. This novel class of photothermal hydrogels can provide an advantage of hyperthermia together with a reversibly transformable hydrogel for tissue engineering. Polypyrrole (Ppy) is a bioorganic conducting polymeric substance and has long been used in biomedical applications owing to its brilliant stability, electrically conductive features, and excellent absorbance around the near-infrared (NIR) region. In this study, a cationic photothermal triggerable/guidable gelatin hydrogel containing a polyethylenimine (PEI)⁻Ppy nanocomplex with a porous microstructure was established, and its physicochemical characteristics were studied through dynamic light scattering, scanning electronic microscopy, transmission electron microscopy, an FTIR; and cellular interaction behaviors towards fibroblasts incubated with a test sample were examined via MTT assay and fluorescence microscopy. Photothermal performance was evaluated. Furthermore, the in vivo study was performed on male Wistar rat full thickness excisions model for checking the safety and efficacy of the designed gelatin⁻PEI⁻Ppy nanohydrogel system in wound healing and for other biomedical uses in future. This photothermally sensitive hydrogel system has an NIR-triggerable property that provides local hyperthermic temperature by PEI⁻Ppy nanoparticles for tissue engineering applications. Features of the designed hydrogel may fill other niches, such as being an antibacterial agent, generation of free radicals to further improve wound healing, and remodeling of the promising photothermal therapy for future tissue engineering applications.


Asunto(s)
Gelatina/farmacología , Hidrogeles/química , Pirroles/química , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Gelatina/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Polietileneimina/química , Porosidad , Ratas , Ratas Wistar , Temperatura
10.
J Mater Chem B ; 6(6): 979-990, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254378

RESUMEN

Autologous skin grafts, which can cause donor site morbidity, are currently used to treat deep wounds. To improve the regeneration of poorly healing wounds, cell-derived extracellular matrix (ECM) scaffolds are garnering great research interest due to their associated lower risks of pathogen transfer and immune rejection. However, the mechanical properties of cell-derived ECM scaffolds are inferior when compared to those of tissue-derived ECM scaffolds. To overcome this drawback, different amounts (10, 20, 50, and 100 µg mL-1) of graphene oxide (GO) and genipin (1% w/v) were applied to adipose stem cell (ASC)-derived ECM sponges. There are still only a few studies employing cell-derived extracellular matrices as biomimetic scaffolds for biomedical applications. The aim of our study was to develop biocompatible, biodegradable, low immunogenic, and genipin-crosslinked ASC-derived ECM sponges containing a suitable amount of GO for skin-tissue engineering. Sponges were fabricated using cultures of ASCs, cell sheets, and decellularization of an ASC cell sheet, freeze-thawing, and crosslinking in a sequential manner. Scanning electron microscopic analyses of the sponges demonstrated a highly porous microstructure with a pore size of 71.22 ± 19.52 µm. The in vitro degradation rate was found to be significantly higher in the non-crosslinked ECM sponges and pure ECM sponges than in the genipin-crosslinked ECM sponges. During an in vivo study, we investigated the material feasibilities and degradability of the constructed ECM sponges as a suitable skin tissue-engineering scaffold in a xenogenic animal (rat) model for 4 weeks. After subcutaneous implantation, the ECM sponges containing a medium amount of GO showed appropriate biodegradation with a lower inflammatory reaction. Hence, the fabricated ECM sponges might be a suitable xenogenous skin substitute for full-thickness skin defects and in other future soft-tissue engineering applications, such as healing partial tears of the anterior cruciate ligament.

11.
Eur J Med Chem ; 139: 367-377, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28810188

RESUMEN

A novel series of twenty four tacrine derivatives were designed and synthesised. Among these, thirteen were taken for the acetylcholinesterase (AChE) inhibition studies. Three compounds such as 4c, 6c and 6f were found to possess significant AChE inhibitory properties with IC50 values 12.97 ± 0.47 nM, 5.17 ± 0.24 nM and 7.14 ± 0.78 nM respectively. In silico docking studies revealed that these compounds can bind strongly in the active site of the enzyme and prevent enzyme-substrate interactions. On binding, the substituted groups were oriented either towards the peripheral anionic site (PAS) (Pocket A) or towards a hydrophobic cavity (pocket B) located near the active site. The cytotoxicity and hepatotoxicity of the compounds were tested using HEK-293 and HepG2 cell lines respectively. The compound 4c did not show any significant decrease in the cell viability even at a concentration of 300 µM indicating that its cytotoxicity and hepatotoxicity are significantly lesser compared to tacrine, due to the chemical modification. Based on the available results, it can be suggested that the compound 4c might be a potential drug lead compound with AChE inhibitory activity. However, further pharmacokinetic studies are necessary to comment on the efficacy of the compound as a drug for AD.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Tacrina/farmacología , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tacrina/síntesis química , Tacrina/química
12.
PeerJ ; 5: e3498, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28663938

RESUMEN

Toxicity issues and biocompatibility concerns with traditional classical chemical cross-linking processes prevent them from being universal approaches for hydrogel fabrication for tissue engineering. Physical cross-linking methods are non-toxic and widely used to obtain cross-linked polymers in a tunable manner. Therefore, in the current study, argon micro-plasma was introduced as a neutral energy source for cross-linking in fabrication of the desired gelatin-graphene oxide (gel-GO) nanocomposite hydrogel scaffolds. Argon microplasma was used to treat purified gelatin (8% w/v) containing 0.1∼1 wt% of high-functionality nano-graphene oxide (GO). Optimized plasma conditions (2,500 V and 8.7 mA) for 15 min with a gas flow rate of 100 standard cm3/min was found to be most suitable for producing the gel-GO nanocomposite hydrogels. The developed hydrogel was characterized by the degree of cross-linking, FTIR spectroscopy, SEM, confocal microscopy, swelling behavior, contact angle measurement, and rheology. The cell viability was examined by an MTT assay and a live/dead assay. The pore size of the hydrogel was found to be 287 ± 27 µm with a contact angle of 78° ± 3.7°. Rheological data revealed improved storage as well as a loss modulus of up to 50% with tunable viscoelasticity, gel strength, and mechanical properties at 37 °C temperature in the microplasma-treated groups. The swelling behavior demonstrated a better water-holding capacity of the gel-GO hydrogels for cell growth and proliferation. Results of the MTT assay, microscopy, and live/dead assay exhibited better cell viability at 1% (w/w) of high-functionality GO in gelatin. The highlight of the present study is the first successful attempt of microplasma-assisted gelatin-GO nano composite hydrogel fabrication that offers great promise and optimism for further biomedical tissue engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...