Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11271, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438463

RESUMEN

Dengue (DENV) and chikungunya (CHIKV) viruses are among the most preponderant arboviruses. Although primarily transmitted through the bite of Aedes aegypti mosquitoes, Aedes albopictus and Aedes malayensis are competent vectors and have an impact on arbovirus epidemiology. Here, to fill the gap in our understanding of the molecular interactions between secondary vectors and arboviruses, we used transcriptomics to profile the whole-genome responses of A. albopictus to CHIKV and of A. malayensis to CHIKV and DENV at 1 and 4 days post-infection (dpi) in midguts. In A. albopictus, 1793 and 339 genes were significantly regulated by CHIKV at 1 and 4 dpi, respectively. In A. malayensis, 943 and 222 genes upon CHIKV infection, and 74 and 69 genes upon DENV infection were significantly regulated at 1 and 4 dpi, respectively. We reported 81 genes that were consistently differentially regulated in all the CHIKV-infected conditions, identifying a CHIKV-induced signature. We identified expressed immune genes in both mosquito species, using a de novo assembled midgut transcriptome for A. malayensis, and described the immune architectures. We found the JNK pathway activated in all conditions, generalizing its antiviral function to Aedines. Our comprehensive study provides insight into arbovirus transmission by multiple Aedes vectors.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Dengue , Animales , Transcriptoma , Aedes/genética , Virus Chikungunya/genética , Fiebre Chikungunya/genética , Mosquitos Vectores/genética , Dengue/genética
2.
PLoS Pathog ; 18(9): e1010427, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121894

RESUMEN

Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Regiones no Traducidas 3'/genética , Aedes/genética , Animales , Proteínas Portadoras/genética , Virus del Dengue/genética , Humanos , Mamíferos , Mosquitos Vectores/genética , ARN Guía de Kinetoplastida , Proteínas de Unión al ARN/genética , Saliva
3.
ACS Infect Dis ; 7(12): 3277-3291, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34735113

RESUMEN

Dengue virus (DENV) non-structural protein 5 (NS5) is critical for viral RNA synthesis within endoplasmic reticulum (ER)-derived replication complexes in the cytoplasm; however a proportion of NS5 is known to be localized to the nucleus of infected cells. The importance of nuclear DENV NS5 on viral replication and pathogenesis is still unclear. We recently discovered a nuclear localization signal (NLS) residing in the C-terminal 18 amino acid (Cter18) region of DENV NS5 and that a single NS5 P884T amino acid substitution adjacent to the NLS is sufficient to relocalize a significant proportion of DENV2 NS5 from the nucleus to the cytoplasm of infected cells. Here, in vitro studies show that the DENV2 NS5 P884T mutant replicates similarly to the parental wild-type infectious clone-derived virus while inducing a greater type I interferon and inflammatory cytokine response, in a manner independent of NS5's ability to degrade STAT2 or regulate SAT1 splicing. In both AG129 mouse and Aedes aegypti mosquito infection models, the P884T virus exhibits lower levels of viral replication only at early timepoints. Intriguingly, there appears to be a tendency for selection pressure to revert to the wild-type proline in P884T-infected Ae. aegypti, in agreement with the high conservation of the proline at this position of NS5 in DENV2, 3, and 4. These results suggest that the predominant nuclear localization of DENV NS5, while not required for viral RNA replication, may play a role in pathogenesis and modulation of the host immune response and contribute to viral fitness in the mosquito host.


Asunto(s)
Virus del Dengue , Animales , Línea Celular , Virus del Dengue/genética , Ratones , Mutación , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
Cell Rep ; 31(6): 107617, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402284

RESUMEN

The molecular basis of dengue virus (DENV) attenuation remains ambiguous and hampers a targeted approach to derive safe but nonetheless immunogenic live vaccine candidates. Here, we take advantage of DENV serotype 2 PDK53 vaccine strain, which recently and successfully completed a phase-3 clinical trial, to identify how this virus is attenuated compared to its wild-type parent, DENV2 16681. Site-directed mutagenesis on a 16681 infectious clone identifies a single G53D substitution in the non-structural 1 (NS1) protein that reduces 16681 infection and dissemination in both Aedes aegypti, as well as in mammalian cells to produce the characteristic phenotypes of PDK53. Mechanistically, NS1 G53D impairs the function of a known host factor, the endoplasmic reticulum (ER)-resident ribophorin 1 protein, to properly glycosylate NS1 and thus induce a host antiviral gene through ER stress responses. Our findings provide molecular insights on DENV attenuation on a clinically tested strain.


Asunto(s)
Vacunas contra el Dengue/farmacología , Virus del Dengue/genética , Virus del Dengue/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Aedes/virología , Animales , Chlorocebus aethiops , Dengue/virología , Vacunas contra el Dengue/inmunología , Estrés del Retículo Endoplásmico , Femenino , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Células Vero , Proteínas no Estructurales Virales/metabolismo
5.
Pathogens ; 9(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403319

RESUMEN

While the Zika virus (ZIKV) 2014-2017 pandemic has subsided, there remains active transmission. Apart from horizontal transmission to humans, the main vector Aedes aegypti can transmit the virus vertically from mother to offspring. Large variation in vertical transmission (VT) efficiency between studies indicates the influence of parameters, which remain to be characterized. To determine the roles of extrinsic incubation time and gonotrophic cycle, we deployed an experimental design that quantifies ZIKV in individual progeny and larvae. We observed an early infection of ovaries that exponentially progressed. We quantified VT rate, filial infection rate, and viral load per infected larvae at 10 days post oral infection (d.p.i.) on the second gonotrophic cycle and at 17 d.p.i. on the second and third gonotrophic cycle. As compared to previous reports that studied pooled samples, we detected a relatively high VT efficiency from 1.79% at 10 d.p.i. and second gonotrophic cycle to 66% at 17 d.p.i. and second gonotrophic cycle. At 17 d.p.i., viral load largely varied and averaged around 800 genomic RNA (gRNA) copies. Longer incubation time and fewer gonotrophic cycles promoted VT. These results shed light on the mechanism of VT, how environmental conditions favor VT, and whether VT can maintain ZIKV circulation.

6.
Nat Commun ; 9(1): 1031, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531213

RESUMEN

Zika virus (ZIKV) is a flavivirus that can cause congenital disease and requires development of an effective long-term preventative strategy. A replicative ZIKV vaccine with properties similar to the yellow fever 17D (YF17D) live-attenuated vaccine (LAV) would be advantageous, as a single dose of YF17D produces lifelong immunity. However, a replicative ZIKV vaccine must also be safe from causing persistent organ infections. Here we report an approach to ZIKV LAV development. We identify a ZIKV variant that produces small plaques due to interferon (IFN)-restricted viral propagation and displays attenuated infection of endothelial cells. We show that these properties collectively reduce the risk of organ infections and vertical transmission in a mouse model but remain sufficiently immunogenic to prevent wild-type ZIKV infection. Our findings suggest a strategy for the development of a safe but efficacious ZIKV LAV.


Asunto(s)
Técnicas Inmunológicas , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/genética , Virus Zika/inmunología , Aedes/inmunología , Aedes/virología , Animales , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
7.
PLoS Pathog ; 13(7): e1006535, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753642

RESUMEN

Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3' UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3'UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3'UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3'UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts.


Asunto(s)
Aedes/inmunología , Aedes/virología , Virus del Dengue/fisiología , Dengue/transmisión , Insectos Vectores/inmunología , Insectos Vectores/virología , Animales , Dengue/virología , Virus del Dengue/genética , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Glándulas Salivales/inmunología , Glándulas Salivales/virología , Replicación Viral
8.
PLoS Negl Trop Dis ; 11(6): e0005667, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28650959

RESUMEN

BACKGROUND: Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. METHODS: We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. RESULTS: We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. CONCLUSIONS: Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.


Asunto(s)
Aedes/crecimiento & desarrollo , Aedes/virología , Virus Chikungunya/aislamiento & purificación , Virus del Dengue/aislamiento & purificación , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología , Saliva/virología , Animales , Ciudades , Entomología , Humanos , Singapur
9.
Sci Rep ; 7(1): 1215, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28450714

RESUMEN

Zika is a mosquito-borne disease associated with neurological disorders that causes an on-going pandemic. The first outbreak was recorded in Micronesia in 2007, then in French Polynesia in 2014 from which it spread to South America in 2015 and ignited a widespread epidemic. Interestingly, Zika outbreaks in Asia remained of moderate intensity although the virus is circulating. To understand these epidemiological variations, we investigated the entomological determinants of ZIKV transmission in Asia. We used oral infection of mosquitoes collected in Singapore to identify the vector species, to quantify the blood infection threshold and to compare transmissibility between an Asian ZIKV strain (H/PF13) and an American strain collected in Brazil (BE H 815744). We have confirmed the vector status of Aedes aegypti and determined that 103 pfu/ml of blood is sufficient to infect mosquitoes. We showed that only the American strain was present in the saliva 3 days post-infection, and that this strain had a 30-40% higher rate of saliva infection in Ae. aegypti from 3 to 14 days post-infection than the Asian strain. Our data suggests that American strains are more efficiently transmitted than Asian strains, which raises concerns about the introduction of American strains in Asia.


Asunto(s)
Aedes/virología , Transmisión de Enfermedad Infecciosa , Mosquitos Vectores/virología , Saliva/virología , Carga Viral , Infección por el Virus Zika/transmisión , Virus Zika/aislamiento & purificación , Animales , Humanos , Factores de Tiempo , Virus Zika/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...