Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000559

RESUMEN

This study establishes a fetal cannabinoid syndrome model to evaluate the effects of high doses of dronabinol (synthetic THC) during pregnancy and lactation on behavioral and brain changes in male and female progeny and their susceptibility to alcohol consumption. Female C57BL/6J mice received dronabinol (10 mg/kg/12 h, p.o.) from gestational day 5 to postnatal day 21. On the weaning day, the offspring were separated by sex, and on postnatal day 60, behavioral and neurobiological changes were analyzed. Mice exposed to dronabinol exhibited increased anxiogenic and depressive-like behaviors and cognitive impairment. These behaviors were associated with neurodevelopment-related gene and protein expression changes, establishing, for the first time, an association among behavioral changes, cognitive impairment, and neurobiological alterations. Exposure to dronabinol during pregnancy and lactation disrupted the reward system, leading to increased motivation to consume alcohol in the offspring. All these modifications exhibited sex-dependent patterns. These findings reveal the pronounced adverse effects on fetal neurodevelopment resulting from cannabis use during pregnancy and lactation and strongly suggest the need to prevent mothers who use cannabis in this period from the severe and permanent side effects on behavior and brain development that may occur in their children.


Asunto(s)
Conducta Animal , Encéfalo , Dronabinol , Lactancia , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Dronabinol/efectos adversos , Conducta Animal/efectos de los fármacos
2.
Antioxidants (Basel) ; 13(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38929144

RESUMEN

Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.

3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892456

RESUMEN

Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.


Asunto(s)
Cannabinoides , Manejo del Dolor , Dolor Postoperatorio , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Manejo del Dolor/métodos , Analgesia/métodos , Animales , Analgésicos/uso terapéutico , Analgésicos/farmacología , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico
4.
Biomed Pharmacother ; 177: 117054, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943991

RESUMEN

Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 µg), UCM707 (75 µg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, µ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of µ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 µg) and UCM707 (75 µg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify µ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of µ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.

5.
Neuropharmacology ; 247: 109850, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295947

RESUMEN

Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPß/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPß/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.


Asunto(s)
Etanol , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Ratones , Masculino , Animales , Femenino , Etanol/farmacología , Etanol/metabolismo , Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Consumo de Bebidas Alcohólicas
6.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069051

RESUMEN

Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.


Asunto(s)
Trastornos Mentales , Suicidio , Adulto , Adolescente , Humanos , Intento de Suicidio/psicología , Suicidio/psicología , Ideación Suicida , Trastornos Mentales/psicología , Factores de Riesgo
7.
Biomedicines ; 11(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509436

RESUMEN

The cognitive decline in people with substance use disorders is well known and can be found during both the dependence and drug abstinence phases. At the clinical level, cognitive decline impairs the response to addiction treatment and increases dropout rates. It can be irreversible, even after the end of drug abuse consumption. Improving our understanding of the molecular and cellular alterations associated with cognitive decline could be essential to developing specific therapeutic strategies for its treatment. Developing animal models to simulate drug abuse-induced learning and memory alterations is critical to continue exploring this clinical situation. The main aim of this review is to summarize the most recent evidence on cognitive impairment and the associated biological markers in patients addicted to some of the most consumed drugs of abuse and in animal models simulating this clinical situation. The available information suggests the need to develop more studies to further explore the molecular alterations associated with cognitive impairment, with the ultimate goal of developing new potential therapeutic strategies.

8.
J Affect Disord ; 339: 366-376, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437733

RESUMEN

BACKGROUND: Developing biological based approaches for preventing suicide has become a priority. In recent years, there has been a surge in studies investigating the role of the glutamatergic system in suicide, although it remains unclear. METHODS: We evaluated changes in the gene expression of the metabotropic glutamate receptor 5 (mGluR5) and its scaffolding proteins Homer1a and p11 in the dorsolateral prefrontal cortex (DLPFC), amygdala (AMY), and hippocampus (HIP) of 28 suicide decedents (S) (with no clinical psychiatric history or treatment with anxiolytics or antidepressants) and 26 controls (C) by real-time PCR (qPCR). Indeed, we measured BDNF gene expression and VGluT1 and VGAT immunoreactivities in the HIP by qPCR and immunohistochemistry, respectively. Cases and controls matched for age (C: 48.6 ± 11.6 years; S: 46.9 ± 14.5 years) and postmortem interval (PMI; C: 20.1 ± 13h; S: 16.9 ± 5h). RESULTS: In DLPFC, S had lower p11 gene expression levels, but no differences were found in mGluR5 or Homer1a. In the AMY and HIP, mGluR5 and Homer1a were increased, p11 and BDNF were reduced. In the HIP, there were less VGAT-ir and more VGluT1-ir. LIMITATIONS: Future studies are necessary to evaluate protein levels, and determine the cell types and potential compensatory mechanisms in a larger sample including S diagnosed with psychiatric disorders, females and different ethnicities. CONCLUSIONS: This study identified significant alterations in mGluR5, Homer1a, p11, BDNF and excitatory/inhibitory balance in corticolimbic brain areas of S. These results further characterize the biological basis of suicide, contributing to the identification of potential biomarkers for suicide prevention.

9.
Front Pharmacol ; 14: 1171646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144214

RESUMEN

Introduction: This study aims to further characterize cannabidiol's pharmacological and molecular profile as an antidepressant. Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR), were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic mild stress (UCMS) procedure. Once the model was established (4 weeks), mice received CBD (20 mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for 28 days. The efficacy of CBD was evaluated using the light-dark box (LDB), elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and novel object recognition (NOR) tests. Gene expression changes in the serotonin transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in the Hipp. Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of treatment to show efficacy. CBD improved cognitive impairment and anhedonia more significantly than STR. CBD plus STR showed a similar effect than CBD in the LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp. Discussion: These results pointed out CBD as a potential new antidepressant with faster action and efficiency than STR. Particular attention should be given to the combination of CBD with current SSRI since it appears to produce a negative impact on treatment.

10.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108813

RESUMEN

The increasing prevalence of cognitive dysfunction and dementia in developed countries, associated with population aging, has generated great interest in characterizing and quantifying cognitive deficits in these patients. An essential tool for accurate diagnosis is cognitive assessment, a lengthy process that depends on the cognitive domains analyzed. Cognitive tests, functional capacity scales, and advanced neuroimaging studies explore the different mental functions in clinical practice. On the other hand, animal models of human diseases with cognitive impairment are essential for understanding disease pathophysiology. The study of cognitive function using animal models encompasses multiple dimensions, and deciding which ones to investigate is necessary to select the most appropriate and specific tests. Therefore, this review studies the main cognitive tests for assessing cognitive deficits in patients with neurodegenerative diseases. Cognitive tests, the most commonly used functional capacity scales, and those resulting from previous evidence are considered. In addition, the leading behavioral tests that assess cognitive functions in animal models of disorders with cognitive impairment are highlighted.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Animales , Humanos , Trastornos del Conocimiento/complicaciones , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/complicaciones , Cognición , Pruebas Neuropsicológicas , Enfermedades Neurodegenerativas/complicaciones
11.
Neuropharmacology ; 233: 109549, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37085012

RESUMEN

The main goal of this study was to evaluate if the administration of cannabidiol (CBD) regulates behavioral and gene expression alterations induced by spontaneous alcohol withdrawal (SAW) in mice. Increasing doses of ethanol were administered to C57BL/6J male mice for 15 days (2.5, 3 and 3.5 g/kg/12 h, p. o.), and SAW was studied at 6, 12, 24, and 72 h after the last ethanol administration. The efficacy of acute CBD (10, 20, and 40 mg/kg, i. p.) to regulate behavioral changes induced by SAW was explored at 6 h. Gene expression analyses of cannabinoid receptors 1 (Cnr1) and 2 (Cnr2), mu-opioid receptor (Opmr1), and proopiomelanocortin (Pomc) in the nucleus accumbens (NAcc), and Pomc and tyrosine hydroxylase (Th) in the ventral tegmental area (VTA), were carried out by real time-PCR. Pearson correlation was used to identify potential associations between the gene expression data and the anxiety-like behaviors. Biostatistical studies suggest associations between gene expression data and the anxiogenic behaviors in mice exposed to the SAW model and treated with VEH and 40 mg/kg of CBD. Mice exposed to the SAW model showed significant somatic withdrawal signs, anxiety-like behaviors, and remarkable changes in the gene expression of all brain targets at 6 h. CBD dose-dependently normalized the behavioral, somatic withdrawal signs and anxiety-like behaviors and modulated gene expression changes in the NAcc, but not in the VTA. The results of this study suggest that CBD may regulate specific alcohol withdrawal-associated alterations. However, further studies are required to explore the possible mechanisms involved.


Asunto(s)
Alcoholismo , Cannabidiol , Síndrome de Abstinencia a Sustancias , Masculino , Animales , Ratones , Cannabidiol/farmacología , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Proopiomelanocortina/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Área Tegmental Ventral/metabolismo , Etanol
13.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768626

RESUMEN

The crosstalk between the opioidergic system and mitogen-activated protein kinases (MAPKs) has a critical role in mediating stress-induced behaviors related to the pathophysiology of anxiety. The present study evaluated the basal status and stress-induced alterations of cortico-thalamic MAPKs and other cell fate-related signaling pathways potentially underlying the anxiogenic endophenotype of PDYN gene-deficient mice. Compared to littermates, PDYN knockout (KO) mice had lower cortical and or thalamic amounts of the phospho-activated MAPKs c-Jun N-terminal kinase (JNK1/2) and extracellular signal-regulated kinase (ERK1/2). Similarly, PDYN-KO animals displayed reduced cortico-thalamic densities of total and phosphorylated (at Ser191) species of the cell fate regulator Fas-associated protein with death domain (FADD) without alterations in the Fas receptor. Exposure to acute restraint and chronic mild stress stimuli induced the robust stimulation of JNK1/2 and ERK1/2 MAPKs, FADD, and Akt-mTOR pathways, without apparent increases in apoptotic rates. Interestingly, PDYN deficiency prevented stress-induced JNK1/2 and FADD but not ERK1/2 or Akt-mTOR hyperactivations. These findings suggest that cortico-thalamic MAPK- and FADD-dependent neuroplasticity might be altered in PDYN-KO mice. In addition, the results also indicate that the PDYN gene (and hence dynorphin release) may be required to stimulate JNK1/2 and FADD (but not ERK1/2 or Akt/mTOR) pathways under environmental stress conditions.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Apoptosis/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Pharmacol Res ; 188: 106655, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642113

RESUMEN

Fetal alcohol spectrum disorder (FASD) includes neuropsychiatric disturbances related to gestational and lactational ethanol exposure. Available treatments are minimal and do not modulate ethanol-induced damage. Developing animal models simulating FASD is essential for understanding the underlying brain alterations and searching for efficient therapeutic approaches. The main goal of this study was to evaluate the effects of early and chronic cannabidiol (CBD) administration on offspring exposed to an animal model of FASD. Ethanol gavage (3 g/kg/12 h, p.o.) was administered to C57BL/6 J female mice, with a previous history of alcohol consumption, between gestational day 7 and postnatal day 21. On the weaning day, pups were separated by sex, and CBD administration began (30 mg/kg/day, i.p.). After 4-6 weeks of treatment, behavioral and neurobiological changes were analyzed. Mice exposed to the animal model of FASD showed higher anxiogenic and depressive-like behaviors and cognitive impairment that were evaluated through several experimental tests. These behaviors were accompanied by alterations in the gene, cellular and metabolomic targets. CBD administration normalized FASD model-induced emotional and cognitive disturbances, gene expression, and cellular changes with sex-dependent differences. CBD modulates the metabolomic changes detected in the hippocampus and prefrontal cortex. Interestingly, no changes were found in mitochondria or the oxidative status of the cells. These results suggest that the early and repeated administration of CBD modulated the long-lasting behavioral, gene and protein alterations induced by the FASD model, encouraging the possibility of performing clinical trials to evaluate the effects of CBD in children affected with FASD.


Asunto(s)
Cannabidiol , Trastornos del Espectro Alcohólico Fetal , Humanos , Embarazo , Animales , Ratones , Femenino , Trastornos del Espectro Alcohólico Fetal/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Etanol
15.
Neurosci Lett ; 788: 136855, 2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-36028005

RESUMEN

Neuropathic pain (NP) arises as a direct consequence of traumatic spinal cord injury (SCI), which leads to devastating consequences for people suffering from this condition since no specific treatment has been defined. One relevant mechanism in generating painful stimuli involves the direct participation of reactive oxygen species (ROS) at the cellular and subcellular levels. Cannabidiol (CBD) is one of the two most crucial cannabinoid components of the cannabis plant and has been proposed as a potential treatment for NP. Its antioxidant, neuroprotective and anti-inflammatory properties have been documented. However, there is insufficient evidence regarding CBD as treatment of NP induced by SCI or the mechanisms that underlie this effect. In this study, we evaluated the antinociceptive effect of CBD as an acute treatment after the nociceptive behaviors characteristic of NP were established (hypersensitivity threshold and hypersensitivity response). Furthermore, the participation of oxidative stress was determined by lipid peroxidation (LP) and glutathione concentration (GSH) in female Wistar rats with SCI. Acute treatment with CBD (2.5-20 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH concentration in injured tissue 15 days after injury. The findings of this study suggest that the antinociceptive effect induced by CBD is regulated by reducing oxidative stress by decreasing the LP and increasing the concentration of antioxidant (GSH) defenses.


Asunto(s)
Cannabidiol , Neuralgia , Traumatismos de la Médula Espinal , Analgésicos/farmacología , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Glutatión/metabolismo , Humanos , Estrés Oxidativo , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
16.
Neuropharmacology ; 218: 109211, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973598

RESUMEN

Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition with a critical familiar, personal, and social impact. Patients diagnosed with PTSD show various symptoms, including anxiety, depression, psychotic episodes, and sleep disturbances, complicating their therapeutic management. Only sertraline and paroxetine, two selective serotonin reuptake inhibitors, are approved by different international agencies to treat PTSD. In addition, these drugs are generally combined with psychotherapy to achieve positive results. However, these pharmacological strategies present limited efficacy. Nearly half of the PTSD patients do not experience remission of symptoms, possibly due to the high prevalence of psychiatric comorbidities. Therefore, in clinical practice, other off-label medications are common, even though the effectiveness of these drugs needs to be further investigated. In this line, antipsychotics, antiepileptics, adrenergic blockers, benzodiazepines, and other emerging pharmacological agents have aroused interest as potential therapeutic tools to improve some specific symptoms of PTSD. Thus, this review is focused on the most widely used drugs for the pharmacological treatment of PTSD with a translational approach, including clinical and preclinical studies, to emphasize the need to develop safer and more effective medications.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Paroxetina , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Sertralina/uso terapéutico , Trastornos por Estrés Postraumático/tratamiento farmacológico
17.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682586

RESUMEN

Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: "Receptor, Cannabinoid, CB2" AND "Alcohol-Related Disorders" AND "human/or patients"; "Receptor, Cannabinoid, CB2" AND "Alcohol" OR "Ethanol" AND "rodents/or mice/or rats". Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.


Asunto(s)
Alcoholismo , Cannabinoides , Alcoholismo/genética , Animales , Cannabinoides/farmacología , Etanol , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2/genética , Recompensa
18.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563156

RESUMEN

The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.


Asunto(s)
Trastornos Mentales , Esquizofrenia , Animales , Biomarcadores , Endocannabinoides/fisiología , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Trastornos del Humor , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
19.
Front Psychiatry ; 13: 866052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492718

RESUMEN

Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.

20.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455470

RESUMEN

The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated in several studies. However, the molecular mechanisms involved in these actions remain unclear. A total of 130 male mice were used. CBD's ability to modulate emotional disturbances (anxiety and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and 30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects (20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A (2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1 mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice, contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD. Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a multimodal mechanism of action for CBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...