Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(9): 1977-1986.e8, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38626764

RESUMEN

Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.


Asunto(s)
Filogenia , Autoincompatibilidad en las Plantas con Flores , Autoincompatibilidad en las Plantas con Flores/genética , Flores/genética , Olea/genética , Olea/fisiología , Oleaceae/genética , Genes de Plantas
2.
Mol Phylogenet Evol ; 192: 108008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181828

RESUMEN

Two main landscapes emerge from the Guiana Shield: the highlands to the west called the Pantepui region and the Amazonian lowlands to the east, both harbouring numerous endemic species. With 32 currently recognized species, the genus Anomaloglossus stands out among Neotropical frogs as one that diversified only within the Guiana Shield both in the highlands and the lowlands. We present a time-calibrated phylogeny obtained by using combined mitogenomic and nuclear DNA, which suggests that the genus originates from Pantepui where extant lineages started diversifying around 21 Ma, and subsequently (ca. 17 Ma) dispersed during the Miocene Climatic Optimum to the lowlands of the eastern Guiana Shield where the ability to produce endotrophic tadpoles evolved. Further diversification within the lowlands in the A. stepheni group notably led to an evolutionary reversal toward exotrophy in one species group during the late Miocene, followed by reacquisition of endotrophy during the Pleistocene. These successive shifts of reproductive mode seem to have accompanied climatic oscillations. Long dry periods might have triggered evolution of exotrophy, whereas wetter climates favoured endotrophic forms, enabling colonization of terrestrial habitats distant from water. Acquisition, loss, and reacquisition of endotrophy makes Anomaloglossus unique among frogs and may largely explain the current species diversity. The micro evolutionary processes involved in these rapid shifts of reproductive mode remain to be revealed.


Asunto(s)
Anuros , Ecosistema , Animales , Anuros/genética , Filogenia , Filogeografía
3.
Mol Phylogenet Evol ; 193: 107997, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128795

RESUMEN

Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.


Asunto(s)
Biodiversidad , Ecosistema , Ratas , Animales , Filogenia , Madagascar , Bosques , Roedores/genética , ADN Mitocondrial/genética , Genómica
4.
Genes (Basel) ; 14(7)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37510355

RESUMEN

Habitat loss and fragmentation are of concern to conservation biologists worldwide. However, not all organisms are affected equally by these processes; thus, it is important to study the effects of living in fragmented habitats on species that differ in lifestyle and habitat requirements. In this study, we examined the dispersal and connectivity patterns of rodents, one endemic (Eliurus myoxinus) and one invasive (Rattus rattus), in two landscapes containing forest fragments and adjacent continuous forest patches in northwestern Madagascar. We generated genetic (RADseq) data for 66 E. myoxinus and 81 R. rattus individuals to evaluate differences in genetic diversity as well as inbreeding and connectivity in two landscapes. We found higher levels of inbreeding and lower levels of genetic diversity in E. myoxinus compared with R. rattus. We observed related dyads both within and between habitat patches and positive spatial autocorrelation at lower distance classes for both species, with a stronger pattern of spatial autocorrelation in R. rattus. Across each site, we identified contrasting migration rates for each species, but these did not correspond to habitat-matrix dichotomies. The relatively low genetic diversity in the endemic E. myoxinus suggests ecological constraints that require further investigation.


Asunto(s)
Bosques , Roedores , Ratas , Animales , Roedores/genética , Madagascar , Ecosistema , Variación Genética/genética
5.
Mol Ecol ; 32(11): 3014-3024, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840427

RESUMEN

Recent studies have highlighted associations between diseases and host microbiota. It remains extremely challenging - especially under natural conditions - to clarify whether host microbiota promote future infections, or whether changes in host microbiota result from infections. Nonetheless, deciphering between these two processes is essential for highlighting the role of microbes in disease progression. We longitudinally surveyed, in the wild, the microbiota of individual fish hosts (Leuciscus burdigalensis) both before and after infection by a crustacean ectoparasite (Tracheliastes polycolpus). We found a striking association between parasite infection and the host microbiota composition restricted to the fins the parasite anchored. We clearly demonstrated that infections by the parasite induced a shift in (and did not result from) the host fin microbiota. Furthermore during infection, the microbiota of infected fins got similar to the microbiota of the adult stage, and the free-living infective stage of the parasite with a predominance of the Burkholderiaceae bacteria family. This suggests that some Burkholderiaceae bacteria are involved in a coinfection process and possibly facilitate T. polycolpus infection. In this study, we reveal novel mechanistic insights for understanding the role of the microbiota in host-parasite interactions, which has implications for predicting the progression of diseases in natural host populations.


Asunto(s)
Microbiota , Enfermedades Parasitarias , Animales , Peces , Interacciones Huésped-Parásitos/genética , Microbiota/genética , Estudios Longitudinales
6.
Mol Ecol ; 32(2): 299-315, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320175

RESUMEN

Understanding landscape changes is central to predicting evolutionary trajectories and defining conservation practices. While human-driven deforestation is intense throughout Madagascar, exceptions in areas such as the Loky-Manambato region (north) raise questions regarding the causes and age of forest fragmentation. The Loky-Manambato region also harbours a rich and endemic flora, whose evolutionary origin remains poorly understood. We assessed the genetic diversity of an endangered microendemic Malagasy olive species (Noronhia spinifolia Hong-Wa) to better understand the vegetation dynamics in the Loky-Manambato region and its influence on past evolutionary processes. We characterized 72 individuals sampled across eight forests through nuclear and mitochondrial restriction-associated DNA sequencing data and chloroplast microsatellites. Combined population and landscape genetics analyses indicate that N. spinifolia diversity is largely explained by the current forest cover, highlighting a long-standing habitat mosaic in the region. This sustains a major and long-term role of riparian corridors in maintaining connectivity across these antique mosaic habitats, calling for the study of organismal interactions that promote gene flow.


Asunto(s)
Variación Genética , Árboles , Animales , Humanos , Árboles/genética , Variación Genética/genética , Bosques , Ecosistema , Especies en Peligro de Extinción
7.
Mol Ecol ; 32(8): 1817-1831, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35000240

RESUMEN

Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.


Asunto(s)
Leishmania , Leishmaniasis , Psychodidae , Animales , Humanos , Leishmania/genética , Biodiversidad , Zoonosis , Mamíferos
8.
New Phytol ; 236(2): 698-713, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811430

RESUMEN

The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.


Asunto(s)
Basidiomycota , Micorrizas , Micorrizas/genética , Filogenia , Filogeografía , América del Sur
9.
FEMS Microbiol Ecol ; 98(1)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35099004

RESUMEN

The skin microbiota plays a major role in health of organisms but it is still unclear how such bacterial assemblages respond to changes in environmental conditions and anthropogenic perturbations. In this study, we investigated the effects of the eutrophication of freshwater ecosystems on the skin microbiota of fish. We sampled wild gudgeon Gobio occitaniae from 17 river sites along an eutrophication gradient and compared their skin microbiota diversity and composition, using a 16s rRNA gene metabarcoding approach. Results showed a tendency for higher taxonomic and phylogenetic diversity in highly eutrophic sites linked to the presence of suspended organic matters. We also highlighted significant links between eutrophication and skin microbiota taxonomic composition and beta-diversity. In contrast, skin microbiota characteristics did not correlate with host factors such as age or sex, although microbiota beta-diversity did vary significantly according to host parasite load. To conclude, our study highlights the importance of environmental factors, especially eutrophication, on the diversity and composition of skin mucus bacterial communities. Because changes in the skin microbiota may induce potential deleterious consequences on host health and population persistence, our results confirm the importance of accounting for host-microbiota interactions when examining the consequences of anthropogenic activities on aquatic fauna.


Asunto(s)
Microbiota , Animales , Eutrofización , Humanos , Filogenia , ARN Ribosómico 16S/genética , Ríos/microbiología
10.
Proc Biol Sci ; 289(1967): 20212491, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078363

RESUMEN

Genetic exchanges between closely related groups of organisms with different adaptations have well-documented beneficial and detrimental consequences. In plants, pollen-mediated exchanges affect the sorting of alleles across physical landscapes and influence rates of hybridization. How these dynamics affect the emergence and spread of novel phenotypes remains only partially understood. Here, we use phylogenomics and population genomics to retrace the origin and spread of two geographically overlapping ecotypes of the African grass Alloteropsis angusta. In addition to an ecotype inhabiting wetlands, we report the existence of a previously undescribed ecotype inhabiting Miombo woodlands and grasslands. The two ecotypes are consistently associated with different nuclear groups, which represent an advanced stage of divergence with secondary low-level gene flow. However, the seed-transported chloroplast genomes are consistently shared by distinct ecotypes inhabiting the same region. These patterns suggest that the nuclear genome of one ecotype can enter the seeds of the other via occasional pollen movements with sorting of nuclear groups in subsequent generations. The contrasting ecotypes of A. angusta can thus use each other as a gateway to new locations across a large part of Africa, showing that hybridization can facilitate the geographical dispersal of distinct ecotypes of the same grass species.


Asunto(s)
Ecotipo , Poaceae , Alelos , Flujo Génico , Hibridación Genética , Poaceae/genética
11.
BMC Ecol Evol ; 21(1): 197, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727890

RESUMEN

BACKGROUND: Quaternary climate fluctuations have been acknowledged as major drivers of the geographical distribution of the extraordinary biodiversity observed in tropical biomes, including Madagascar. The main existing framework for Pleistocene Malagasy diversification assumes that forest cover was strongly shaped by warmer Interglacials (leading to forest expansion) and by cooler and arid glacials (leading to forest contraction), but predictions derived from this scenario for forest-dwelling animals have rarely been tested with genomic datasets. RESULTS: We generated genomic data and applied three complementary demographic approaches (Stairway Plot, PSMC and IICR-simulations) to infer population size and connectivity changes for two forest-dependent primate species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. The analyses suggested major demographic changes in both species that could be interpreted in two ways, depending on underlying model assumptions (i.e., panmixia or population structure). Under panmixia, the two species exhibited larger population sizes across the Last Glacial Maximum (LGM) and towards the African Humid Period (AHP). This peak was followed by a population decline in M. ravelobensis until the present, while M. murinus may have experienced a second population expansion that was followed by a sharp decline starting 3000 years ago. In contrast, simulations under population structure suggested decreasing population connectivity between the Last Interglacial and the LGM for both species, but increased connectivity during the AHP exclusively for M. murinus. CONCLUSION: Our study shows that closely related species may differ in their responses to climatic events. Assuming that Pleistocene climatic conditions in the lowlands were similar to those in the Malagasy highlands, some demographic dynamics would be better explained by changes in population connectivity than in population size. However, changes in connectivity alone cannot be easily reconciled with a founder effect that was shown for M. murinus during its colonization of the northwestern Madagascar in the late Pleistocene. To decide between the two alternative models, more knowledge about historic forest dynamics in lowland habitats is necessary. Altogether, our study stresses that demographic inferences strongly depend on the underlying model assumptions. Final conclusions should therefore be based on a comparative evaluation of multiple approaches.


Asunto(s)
Cheirogaleidae , Animales , Cheirogaleidae/genética , Demografía , Ecosistema , Madagascar , Simpatría
12.
Gene ; 800: 145845, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34274465

RESUMEN

The betel nut (Areca catechu L., Arecaceae) is a monoecious cultivated palm tree that is widespread in tropical regions. It is mainly cultivated for producing areca nuts, from which seeds are extracted and chewed by local populations principally in the Indo-Pacific region. Seeds contain alkaloids which are central nervous system stimulants and are highly addictive. Wild relatives of the betel nut are distributed in South Asia and Australasia, with ca. 40-50 Areca species currently recognized. The geographic origin(s) of the betel nut and its subsequent diffusion and diversification remains poorly documented. Here, a genome skimming approach was applied to screen nucleotidic variation in the most abundant genomic regions. Low coverage sequencing data allowed us to assemble full plastomes, mitochondrial regions (either full mitogenomes or the full set of mitochondrial genes) and the nuclear ribosomal DNA cluster for nine representatives of the Areca genus collected in the field and herbarium collections (including a 182-years old specimen collected during the Dumont d'Urville's expedition). These three genomic compartments provided similar phylogenetic signals, and revealed very low genomic diversity in our sample of cultivated betel nut. We finally developed a genotyping method targeting 34 plastid DNA microsatellites. This plastome profiling approach is useful for tracing the spread of matrilineages, and in combination with nuclear genomic data, can resolve the history of the betel nut. Our method also proves to be efficient for analyzing herbarium specimens, even those collected >100 years ago.


Asunto(s)
Areca/genética , Perfilación de la Expresión Génica/métodos , Genoma de Planta , Genoma de Plastidios , ADN Mitocondrial , Repeticiones de Microsatélite , Filogenia
13.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34296190

RESUMEN

Root-knot nematodes (Meloidogyne spp.) cause serious damages on most crops. Here, we report a high-quality genome sequence of Meloidogyne exigua (population Mex1, Costa Rica), a major pathogen of coffee. Its mitogenome (20,974 bp) was first assembled and annotated. The nuclear genome was then constructed consisting of 206 contigs, with an N50 length of 1.89 Mb and a total assembly length of 42.1 Mb.

14.
Syst Biol ; 70(2): 203-218, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32642760

RESUMEN

Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].


Asunto(s)
Cheirogaleidae , Especiación Genética , Animales , Cheirogaleidae/clasificación , Cheirogaleidae/genética , ADN Mitocondrial/genética , Ecosistema , Fósiles , Filogenia
15.
Genes (Basel) ; 11(12)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339232

RESUMEN

The olive family, Oleaceae, is a group of woody plants comprising 28 genera and ca. 700 species, distributed on all continents (except Antarctica) in both temperate and tropical environments. It includes several genera of major economic and ecological importance such as olives, ash trees, jasmines, forsythias, osmanthuses, privets and lilacs. The natural history of the group is not completely understood yet, but its diversification seems to be associated with polyploidisation events and the evolution of various reproductive and dispersal strategies. In addition, some taxonomical issues still need to be resolved, particularly in the paleopolyploid tribe Oleeae. Reconstructing a robust phylogenetic hypothesis is thus an important step toward a better comprehension of Oleaceae's diversity. Here, we reconstructed phylogenies of the olive family using 80 plastid coding sequences, 37 mitochondrial genes, the complete nuclear ribosomal cluster and a small multigene family encoding phytochromes (phyB and phyE) of 61 representative species. Tribes and subtribes were strongly supported by all phylogenetic reconstructions, while a few Oleeae genera are still polyphyletic (Chionanthus, Olea, Osmanthus, Nestegis) or paraphyletic (Schrebera, Syringa). Some phylogenetic relationships among tribes remain poorly resolved with conflicts between topologies reconstructed from different genomic regions. The use of nuclear data remains an important challenge especially in a group with ploidy changes (both paleo- and neo-polyploids). This work provides new genomic datasets that will assist the study of the biogeography and taxonomy of the whole Oleaceae.


Asunto(s)
Genoma de Planta , Oleaceae/genética , Plastidios/genética , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , ADN Ribosómico/genética , Conjuntos de Datos como Asunto , Evolución Molecular , Genes de Plantas , Variación Genética , Funciones de Verosimilitud , Familia de Multigenes , Oleaceae/clasificación , Filogenia , Fitocromo/genética , Proteínas de Plantas/genética , Poliploidía , Especificidad de la Especie
16.
Proc Biol Sci ; 287(1938): 20201960, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171085

RESUMEN

C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.


Asunto(s)
Evolución Biológica , Poaceae/fisiología , Carbono , Flujo Génico , Genoma , Orgánulos , Fenotipo , Fotosíntesis/fisiología , Filogenia , Poliploidía
17.
Mitochondrial DNA B Resour ; 5(3): 3088-3090, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-33458069

RESUMEN

The complete mitogenome of the lizard Iphisa elegans Gray, 1851 was sequenced using a shotgun approach on an Illumina HiSeq 3000 platform, providing the first mitogenome for Gymnophthalmidae. The genome was 18,622 bp long, with 13 protein-coding genes, two rRNA (12S and 16S), and 22 tRNA, as well as the control region. A maximum likelihood phylogenetic analysis including I. elegans and all other available mitogenomes of Squamata provided a tree in accordance with previous phylogenetic relationships inferred for Squamata.

18.
Sci Data ; 6(1): 206, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619686

RESUMEN

In Amazonia, the knowledge about Fungi remains patchy and biased towards accessible sites. This is particularly the case in French Guiana where the existing collections have been confined to few coastal localities. Here, we aimed at filling the gaps of knowledge in undersampled areas of this region, particularly focusing on the Basidiomycota. From 2011, we comprehensively collected fruiting-bodies with a stratified and reproducible sampling scheme in 126 plots. Sites of sampling reflected the main forest habitats of French Guiana in terms of soil fertility and topography. The dataset of 5219 specimens gathers 245 genera belonging to 75 families, 642 specimens are barcoded. The dataset is not a checklist as only 27% of the specimens are identified at the species level but 96% are identified at the genus level. We found an extraordinary diversity distributed across forest habitats. The dataset is an unprecedented and original collection of Basidiomycota for the region, making specimens available for taxonomists and ecologists. The database is publicly available in the GBIF repository ( https://doi.org/10.15468/ymvlrp ).


Asunto(s)
Basidiomycota/clasificación , Bosques , Hongos/clasificación , Guyana Francesa , Suelo
19.
Front Plant Sci ; 10: 932, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379909

RESUMEN

Succession is generally well described above-ground in the boreal forest, and several studies have demonstrated the role of interspecific facilitation in tree species establishment. However, the role of mycorrhizal communities for tree establishment and interspecific facilitation, has been little explored. At the ecotone between the mixed boreal forest, dominated by balsam fir and hardwood species, and the boreal forest, dominated by black spruce, several stands of trembling aspen can be found, surrounded by black spruce forest. Regeneration of balsam fir seems to have increased in the recent decades within the boreal forest, and it seems better adapted to grow in trembling aspen stands than in black spruce stands, even when located in similar abiotic conditions. As black spruce stands are also covered by ericaceous shrubs, we investigated if differences in soil fungal communities and ericaceous shrubs abundance could explain the differences observed in balsam fir growth and nutrition. We conducted a study centered on individual saplings to link growth and foliar nutrient concentrations to local vegetation cover, mycorrhization rate, and mycorrhizal communities associated with balsam fir roots. We found that foliar nutrient concentrations and ramification indices (colonization by mycorrhiza per length of root) were greater in trembling aspen stands and were positively correlated to apical and lateral growth of balsam fir saplings. In black spruce stands, the presence of ericaceous shrubs near balsam fir saplings affected ectomycorrhizal communities associated with tree roots which in turn negatively correlated with N foliar concentrations. Our results reveal that fungal communities observed under aspen are drivers of balsam fir early growth and nutrition in boreal forest stands and may facilitate ecotone migration in a context of climate change.

20.
New Phytol ; 219(1): 336-349, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29377140

RESUMEN

We investigated whether the diversity, endemicity and specificity of alder symbionts could be changed by isolation in a Mediterranean glacial refugium. We studied both ectomycorrhizal (EM) fungi and nitrogen-fixing actinobacteria associated with alders, and compared their communities in Corsica and on the European continent. Nodules and root tips were sampled on the three alder species present in Corsica and continental France and Italy. Phylogenies based on internal transcribed spacer (ITS) and a multilocus sequence analysis approach were used to characterize fungal and Frankia species, respectively. Patterns of diversity, endemism and specialization were compared between hosts and regions for each symbiont community. In Corsica, communities were not generally richer than on the mainland. The species richness per site depended mainly on host identity: Alnus glutinosa and Alnus cordata hosted richer Frankia and EM communities, respectively. Half of the Frankia species were endemic to Corsica against only 4% of EM species. Corsica is not a hotspot of diversity for all alder symbionts but sustains an increased frequency of poor-dispersers such as hypogeous fungi. Generalist EM fungi and host-dependent profusely sporulating (Sp+) Frankia were abundantly associated with Corsican A. cordata, a pattern related to a more thermophilic and xerophylic climate and to the co-occurrence with other host trees.


Asunto(s)
Alnus/microbiología , Biodiversidad , Raíces de Plantas/microbiología , Francia , Frankia/genética , Frankia/fisiología , Italia , Micorrizas/fisiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...