Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7223, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174514

RESUMEN

Electrical stimulation holds promise for enhancing neuronal differentiation of neural stem cells to treat traumatic brain injury. However, once the stem cells leave the stimulating material and migrate post transplantation, electrical stimulation on them is diminished. Here, we wrap the stem cells with wireless electrical nanopatches, the conductive graphene nanosheets. Under electromagnetic induction, electrical stimulation can thus be applied in-situ to individual nanopatch-wrapped stem cells on demand, stimulating their neuronal differentiation through a MAPK/ERK signaling pathway. Consequently, 41% of the nanopatch-wrapped stem cells differentiate into functional neurons in 5 days, as opposed to only 16.3% of the unwrapped ones. The brain injury male mice implanted with the nanopatch-wrapped stem cells and exposed to a rotating magnetic field 30 min/day exhibit significant recovery of brain tissues, behaviors, and cognitions, within 28 days. This study opens up an avenue to individualized electrical stimulation of transplanted stem cells for treating neurodegenerative diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Diferenciación Celular , Células-Madre Neurales , Trasplante de Células Madre , Animales , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/patología , Masculino , Ratones , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Trasplante de Células Madre/métodos , Grafito/química , Estimulación Eléctrica , Tecnología Inalámbrica , Neuronas , Humanos , Encéfalo , Nanoestructuras/química
2.
Adv Healthc Mater ; : e2401458, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009465

RESUMEN

3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.

3.
Nat Commun ; 15(1): 5849, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992001

RESUMEN

The effective isolation of rare target cells, such as circulating tumor cells, from whole blood is still challenging due to the lack of a capturing surface with strong target-binding affinity and non-target-cell resistance. Here we present a solution leveraging the flexibility of bacterial virus (phage) nanofibers with their sidewalls displaying target circulating tumor cell-specific aptamers and their ends tethered to magnetic beads. Such flexible phages, with low stiffness and Young's modulus, can twist and adapt to recognize the cell receptors, energetically enhancing target cell capturing and entropically discouraging non-target cells (white blood cells) adsorption. The magnetic beads with flexible phages can isolate and count target cells with significant increase in cell affinity and reduction in non-target cell absorption compared to magnetic beads having rigid phages. This differentiates breast cancer patients and healthy donors, with impressive area under the curve (0.991) at the optimal detection threshold (>4 target cells mL-1). Immunostaining of captured circulating tumor cells precisely determines breast cancer subtypes with a diagnostic accuracy of 91.07%. Our study reveals the power of viral mechanical attributes in designing surfaces with superior target binding and non-target anti-fouling.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/virología , Femenino , Aptámeros de Nucleótidos/metabolismo , Nanofibras/química , Línea Celular Tumoral , Bacteriófagos/genética
4.
Biomater Sci ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711336

RESUMEN

Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.

5.
Biomaterials ; 309: 122623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797121

RESUMEN

Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.


Asunto(s)
Terapia por Luz de Baja Intensidad , Regeneración , Humanos , Terapia por Luz de Baja Intensidad/métodos , Animales , Regeneración/efectos de la radiación , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Andamios del Tejido/química
6.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710144

RESUMEN

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Límite de Detección , Nanopartículas , Técnicas Biosensibles/métodos , Antibacterianos/análisis , Nanopartículas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Roxitromicina/análisis , Roxitromicina/química , Humanos , Contaminantes Químicos del Agua/análisis , Fibroínas/química
7.
Biomaterials ; 308: 122569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626556

RESUMEN

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Hidróxido de Aluminio , Óxido de Aluminio , Células Dendríticas , Antígenos de Superficie de la Hepatitis B , Nanopartículas , Oligodesoxirribonucleótidos , Adyuvantes Inmunológicos/farmacología , Animales , Nanopartículas/química , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología , Antígenos de Superficie de la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/metabolismo , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Ratones , Ratones Endogámicos C57BL , Femenino , Citocinas/metabolismo , Compuestos de Alumbre/química , Compuestos de Alumbre/farmacología
8.
Adv Mater ; : e2401334, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491868

RESUMEN

Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.

9.
ACS Appl Mater Interfaces ; 16(13): 15798-15808, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507684

RESUMEN

Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.


Asunto(s)
Bombyx , Fibroínas , Animales , Fibroínas/farmacología , Protectores Solares/farmacología , Microesferas , Radicales Libres , Seda
10.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486273

RESUMEN

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Asunto(s)
Bombyx , Lesiones Traumáticas del Encéfalo , Fibroínas , Células Madre Mesenquimatosas , Células-Madre Neurales , Nitritos , Elementos de Transición , Ratas , Animales , Fibroínas/metabolismo , Fibroínas/farmacología , Bombyx/metabolismo , Hidrogeles/farmacología , Neuronas/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo
11.
ACS Appl Mater Interfaces ; 16(14): 17232-17241, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554078

RESUMEN

The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites. To address this challenge, phage-loaded microparticles (Phage-MPs) have been developed to deliver phages to the infection site and release phages for an optimal therapeutic effect. The Phage-MPs are synthesized by allowing phages to be electrostatically attached onto the porous polyethylenimine-modified silk fibroin microparticles (SF-MPs). The high specific surface area of SF-MPs allows them to efficiently load phages, reaching about 1.25 × 1010 pfu per mg of microparticles. The Phage-MPs could release phages in a controlled manner to achieve potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Unlike the diffuse biodistribution of free phages post-intraperitoneal injection, Phage-MPs could continuously release phages to effectively boost the local phage concentration at the bacterial infection site after they are intraperitoneally injected into an abdominal MRSA-infected mouse model. In a mouse abdominal MRSA infection model, Phage-MPs significantly reduce the bacterial load in major organs, achieving an efficient therapeutic effect. Furthermore, Phage-MPs demonstrate outstanding biocompatibility both in vitro and in vivo. Overall, our research lays the foundation for a new generation of phage-based therapies to combat antibiotic-resistant bacterial infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Distribución Tisular , Fagos de Staphylococcus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
12.
Int J Biol Macromol ; 263(Pt 2): 130373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395280

RESUMEN

The integration of liquid metal (LM) and regenerated silk fibroin (RSF) hydrogel holds great potential for achieving effective antibacterial wound treatment through the LM photothermal effect. However, the challenge of LM's uncontrollable shape-deformability hinders its stable application. To address this, we propose a straightforward and environmentally-friendly ice-bath ultrasonic treatment method to fabricate stable RSF-coated eutectic gallium indium (EGaIn) nanoparticles (RSF@EGaIn NPs). Additionally, a double-crosslinked hydrogel (RSF-P-EGaIn) is prepared by incorporating poly N-isopropyl acrylamide (PNIPAAm) and RSF@EGaIn NPs, leading to improved mechanical properties and temperature sensitivity. Our findings reveal that RSF@EGaIn NPs exhibit excellent stability, and the use of near-infrared (NIR) irradiation enhances the antibacterial behavior of RSF-P-EGaIn hydrogel in vivo. In fact, in vivo testing demonstrates that wounds treated with RSF-P-EGaIn hydrogel under NIR irradiation completely healed within 14 days post-trauma infection, with the formation of new skin and hair. Histological examination further indicates that RSF-P-EGaIn hydrogel promoted epithelialization and well-organized collagen deposition in the dermis. These promising results lay a solid foundation for the future development of drug release systems based on photothermal-responsive hydrogels utilizing RSF-P-EGaIn.


Asunto(s)
Antiinfecciosos , Fibroínas , Nanopartículas del Metal , Hidrogeles/farmacología , Antibacterianos/farmacología
13.
ChemSusChem ; 17(11): e202301549, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38298106

RESUMEN

The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.


Asunto(s)
Seda , Purificación del Agua , Purificación del Agua/métodos , Seda/química , Tecnología Química Verde/métodos , Carbono/química , Aguas Residuales/química
14.
J Pharmacol Exp Ther ; 390(1): 45-52, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38272670

RESUMEN

Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties has not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAO) and aluminum hydroxyphosphate (EAHP) nanoparticles was synthesized to determine their neurotoxicity in vitro. It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3, and HT22 cells; however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species generation and mitochondrial membrane potential loss. This study identifies the safety profile of aluminum-containing salts adjuvants in the nervous system during therapeutic vaccine use, and provides novel design strategies for their safer applications. SIGNIFICANCE STATEMENT: In this study, it was demonstrated that engineered aluminum oxyhydroxide and aluminum hydroxyphosphate nanoparticles did not induce cytotoxicity in N9, bEnd.3, and HT22 cells. In comparation, soluble aluminum ions triggered significant cytotoxicity in three different cell lines, indicating that the form in which aluminum is presenting may play a crucial role in its safety. Moreover, apoptosis induced by soluble aluminum ions was dependent on mitochondrial damage. This study confirms the safety of engineered aluminum adjuvants in vaccine formulations.


Asunto(s)
Adyuvantes Inmunológicos , Apoptosis , Vacunas contra el Cáncer , Nanopartículas , Adyuvantes Inmunológicos/farmacología , Animales , Nanopartículas/química , Apoptosis/efectos de los fármacos , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Humanos , Línea Celular , Aluminio/química , Aluminio/toxicidad , Compuestos de Aluminio/toxicidad
15.
Small ; 20(25): e2309364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225691

RESUMEN

Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.

16.
Cancer Lett ; 580: 216481, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972701

RESUMEN

Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.


Asunto(s)
Vesículas Extracelulares , Neoplasias Hepáticas , Neoplasias Pulmonares , Masculino , Humanos , Portadores de Fármacos , Biomarcadores , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA