Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 34, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291038

RESUMEN

The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.

2.
Nano Lett ; 23(20): 9538-9546, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818838

RESUMEN

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.

3.
Adv Sci (Weinh) ; 10(21): e2301589, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37127890

RESUMEN

Cavity-enhanced superfluorescence (CESF) in quantum dot (QD) system is an ultrafast and intense lasing generated by combination of quantum coupling effect and optically stimulated amplification effect, which can provide a new idea for realizing high quality blue light sources and address the limitation of conventional inefficient blue light sources. Modifying halide composition is a straightforward method to achieve blue emission in perovskite QD system. However, the spectral instability introduced by photoinduced halide phase segregation and low coupling efficiency between QDs and optical cavities make it challenging to achieve stable blue CESF in such halide-doped QD system. Herein, long-range-ordered, densely packed CsPbBr2 Cl QD-assembled superlattice microcavities in which the two core issues can be appropriately addressed are developed. The QD superlattice structure facilitates excitonic delocalization to decrease exciton-phonon coupling, thus alleviating photoinduced phase segregation. By combination of theoretical analysis and temperature-dependent photoluminescence (PL) measurements, the underlying photoinduced phase segregation mitigation mechanism in mixed halide superlattices is clarified. Based on the CsPbBr2 Cl QD superlattices with regularly geometrical structures, in which the gain medium can be strongly coupled to the naturally formed microcavity, stable and ultrafast (3 ps) blue CESF with excellent optical performance (threshold ≈33 µJ cm-2 , quality factor ≈1900) is realized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...