Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 50(22): 7621-7632, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33999090

RESUMEN

Although unsaturated organotrifluoroborates are common synthons in metal-organic chemistry, their transition metal complexes have received little attention. [CH2(3,5-(CH3)2Pz)2]Cu(CH2[double bond, length as m-dash]CHBF3), (SIPr)Cu(MeCN)(CH2[double bond, length as m-dash]CHBF3) and [CH2(3,5-(CH3)2Pz)2]Ag(CH2[double bond, length as m-dash]CHBF3) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH2(3,5-(CH3)2Pz)2]M(CH2[double bond, length as m-dash]CHBF3) (M = Cu, Ag) with relatively closer M-C(H)2 distances. The computed structures of [CH2(3,5-(CH3)2Pz)2]M(CH2[double bond, length as m-dash]CHBF3) and M(CH2[double bond, length as m-dash]CHBF3), however, have shorter M-C(H)BF3 distances than M-C(H)2. These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF3 group, possibly affecting these M-C distances. The binding energies of [CH2[double bond, length as m-dash]CHBF3]- to Cu+, Ag+ and Au+ have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH2(3,5-(CH3)2Pz)2. The calculation shows that Au+ has the strongest binding to the [CH2[double bond, length as m-dash]CHBF3]- ligand, followed by Cu+ and Ag+, irrespective of the presence of the supporting ligand. However, in all three metals, the supporting ligand weakens the binding of olefin to the metal. The same trends were also found from the analysis of the σ-donation and π-backbonding interactions between the metal fragment and the π and π* orbitals of [CH2[double bond, length as m-dash]CHBF3]-.

2.
ACS Sens ; 6(1): 192-202, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33400506

RESUMEN

Single-molecule fluorescence imaging (SMFI) of gas-phase ions has been proposed for "barium tagging," a burgeoning area of research in particle physics to detect individual barium daughter ions. This has potential to significantly enhance the sensitivity of searches for neutrinoless double-beta decay (0νßß) that is obscured by background radiation events. The chemistry required to make such sensitive detection of Ba2+ by SMFI in dry Xe gas at solid interfaces has implications for solid-phase detection methods but has not been demonstrated. Here, we synthesized simple, robust, and effective Ba2+-selective chemosensors capable of function within ultrapure high-pressure 136Xe gas. Turn-on fluorescent naphthalimide-(di)azacrown ether chemosensors were Ba2+-selective and achieved SMFI in a polyacrylamide matrix. Fluorescence and NMR experiments supported a photoinduced electron transfer mechanism for turn-on sensing. Ba2+ selectivity was achieved with computational calculations correctly predicting the fluorescence responses of sensors to barium, mercury, and potassium ions. With these molecules, dry-phase single-Ba2+ ion imaging with turn-on fluorescence was realized using an oil-free microscopy technique for the first time-a significant advance toward single-Ba2+ ion detection within large volumes of 136Xe, plausibly enabling a background-independent technique to search for the hypothetical process of 0νßß.


Asunto(s)
Éter , Naftalimidas , Bario , Éteres , Colorantes Fluorescentes , Iones
3.
Appl Spectrosc ; 74(1): 72-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31517520

RESUMEN

The advent of a new vacuum ultraviolet (VUV) spectroscopic absorption detector for gas chromatography has enabled applications in many areas. Theoretical simulations of VUV spectra using computational chemistry can aid the new technique in situations where experimental spectra are unavailable. In this study, VUV spectral simulations of paraffin, isoparaffin, olefin, naphthene, and aromatic (PIONA) compounds using time-dependent density functional theory (TDDFT) methods were investigated. Important factors for the simulations, such as functionals/basis sets and formalism of oscillator strength calculations, were examined and parameters for future PIONA compound simulations were obtained by fitting computational results to experimental spectra. The simulations produced satisfactory correlations between experimental observations and theoretical calculations, and enabled potential analysis applications for complex higher distillate fuels, such as diesel fuel. Further improvement of the methods was proposed.

4.
Org Lett ; 20(17): 5158-5162, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30141634

RESUMEN

Catalytic asymmetric syntheses of remote quaternary stereocenters have been developed by copper-catalyzed 1,4-hydrosilylation of γ,γ-disubstituted cyclohexadienones. A variety of cyclohexenones have been synthesized in good yield and excellent enantioselectivity. Versatile 2-silyloxy diene intermediates bearing γ,γ-disubstituted all carbon stereogenic centers can be isolated from the mild reaction conditions. The utility of this strategy is exemplified in a catalytic asymmetric total synthesis of (+)-mesembrine.

5.
Talanta ; 177: 41-46, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29108582

RESUMEN

Stable-isotopically-labeled internal standards are commonly incorporated in methods for trace analysis that utilize mass spectrometric detection. They closely mimic the physicochemical properties of the analyte, but their signal is easily differentiable based on a change in molecular mass. To investigate the potential to transfer methods incorporating such internal standards for analysis by vacuum ultraviolet detection, a study was conducted to compare the spectral shape (from 125 to 240nm) of stable-isotopically-labeled compounds with their non-labeled counterparts. Gas chromatography - vacuum ultraviolet spectroscopic analysis was performed for a series of benzene isotopologues, as well as for clinically- and environmentally-relevant standard compounds and their deuterated counterparts. The absorption characteristics of the benzene isotopologues were evaluated based on similarity (normalized spectra), as well as on their magnitude of absorption. In general, very minor differences in absorption spectra were observed; however, increasing degree of deuteration did generally increase the spectral difference between labeled and non-labeled analytes. Sum of squared residuals were used as quantitative measures to assess spectral similarity (and dissimilarity). Theoretical computation of absorption spectra for benzene using time-dependent density functional theory was also examined; though, further work is needed in this area to extend the analysis to isotopologue analysis.

6.
Anal Chim Acta ; 971: 55-67, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28456284

RESUMEN

Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool.


Asunto(s)
Estimulantes del Sistema Nervioso Central/análisis , Cromatografía de Gases , Drogas de Diseño/análisis , Análisis Espectral , Isomerismo , Vacio
7.
Anal Chim Acta ; 945: 1-8, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27968710

RESUMEN

An issue with most gas chromatographic detectors is their inability to deconvolve coeluting isomers. Dimethylnaphthalenes are a class of compounds that can be particularly difficult to speciate by gas chromatography - mass spectrometry analysis, because of their significant coelution and similar mass spectra. As an alternative, a vacuum ultraviolet spectroscopic detector paired with gas chromatography was used to study the systematic deconvolution of mixtures of coeluting isomers of dimethylnaphthalenes. Various ratio combinations of 75:25; 50:50; 25:75; 20:80; 10:90; 5:95; and 1:99 were prepared to test the accuracy, precision, and sensitivity of the detector for distinguishing overlapping isomers that had distinct, but very similar absorption spectra. It was found that, under reasonable injection conditions, all of the pairwise overlapping isomers tested could be deconvoluted up to nearly two orders of magnitude (up to 99:1) in relative abundance. These experimental deconvolution values were in agreement with theoretical covariance calculations performed for two of the dimethylnaphthalene isomers. Covariance calculations estimated high picogram detection limits for a minor isomer coeluting with low to mid-nanogram quantity of a more abundant isomer. Further characterization of the analytes was performed using density functional theory computations to compare theory with experimental measurements. Additionally, gas chromatography - vacuum ultraviolet spectroscopy was shown to be able to speciate dimethylnaphthalenes in jet and diesel fuel samples.

8.
Phys Chem Chem Phys ; 18(3): 1911-7, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26687108

RESUMEN

Efficient CO2 capture by ionic liquids needs a thorough understanding of underlying mechanisms of the CO2 interaction with ionic liquids, especially when it involves chemisorption. In this work we have systematically investigated the mechanism of CO2 capture by 1,3 di-substituted imidazolium acetate ionic liquids using density functional theory. Solvent effects are analyzed using QM/MM and QM/QM approaches with the help of molecular dynamics simulations and ONIOM methods. The investigation of different stepwise mechanisms shows that CO2 could be involved in the first step of the reaction mechanism, also a new two-step mechanism is proposed. The final stabilization step is analyzed and pointed out to be responsible for important experimentally-observed features of the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...