Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 142(25): 2175-2191, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37756525

RESUMEN

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Asunto(s)
Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Daño del ADN , Reparación del ADN , Células Germinativas/metabolismo , ADN , Factores de Transcripción/genética
2.
Am J Cancer Res ; 13(6): 2488-2503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424803

RESUMEN

Splicing factor proline- and glutamine-rich (SFPQ) regulates transcripts in skeletal muscle metabolism and tumorigenesis. As osteosarcoma (OS) is the most common malignant bone tumor characterized by genome instability, such as MYC amplification, this study aimed to investigate the role and mechanism of SFPQ in OS. Expression of SFPQ in OS cell lines and human OS tissues was detected using quantitative real-time PCR, western blot, and fluorescence in situ hybridization (FISH) analyses. The oncogenic role of SFPQ in OS cells and murine xenograft models and the underlying mechanism of SFPQ on the c-Myc signaling pathway were assessed in vitro and in vivo. Results showed that SFPQ expression was upregulated and correlated with poor prognosis in OS patients. SFPQ overexpression promoted the malignant biological behavior of OS cells, while its knockdown markedly reduced the oncogenic function of OS. Additionally, depletion of SFPQ inhibited OS growth and bone destruction in nude mice. SFPQ overexpression induced malignant biological behaviors, which could be rescued by the depletion of c-Myc. These results suggest an oncogenic role of SFPQ in OS, possibly through the c-Myc signaling pathway.

3.
Redox Biol ; 62: 102639, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958250

RESUMEN

Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stratify patients. Using a large panel of lung cancer cell lines, we identified a set of "antioxidant-capacity" biomarkers (ACB), which were tightly repressed, partly by STAT3 and STAT5A/B in sensitive cells, rendering them susceptible to multiple redox-targeting and ferroptosis-inducing drugs. Contrary to expectation, constitutively low ACB expression was not associated with an increased steady state level of reactive oxygen species (ROS) but a high level of nitric oxide, which is required to sustain high replication rates. Using ACBs, we identified cancer entities with a high percentage of patients with favorable ACB expression pattern, making it likely that more responders to ROS-inducing drugs could be stratified for clinical trials.


Asunto(s)
Antioxidantes , Neoplasias Pulmonares , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Neoplasias Pulmonares/metabolismo , Oxidación-Reducción , Biomarcadores/metabolismo
4.
Front Oncol ; 12: 819051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212475

RESUMEN

Background: Substantial evidence suggests that receptor tyrosine kinases (RTKs) are overexpressed in tumors; however, few studies have focused on the prognostic value of RTKs in melanoma. Objectives: The objective of this study is to evaluate the association between overexpression of RTKs and survival in melanoma patients based on immunohistochemistry (IHC) analysis. Methods: Our review is registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42021261460. Seven databases were searched, and data were extracted. We used IHC to measure the association between overexpression of RTKs and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathology in melanoma patients. Pooled analysis was conducted to assess the differences between Hazard Ratios along with 95% confidence intervals. Results: Of 5,508 publications examined following the database search, 23 publications were included in this study, which included data from a total of 2,072 patients. Vascular endothelial growth factor receptor 2 (VEGF-R2) overexpression was associated with worse OS and DFS in melanoma. Furthermore, there was an association between OS and the expression of several RTKs, including epidermal growth factor receptor (EGFR), mesenchymal-epithelial transition factor (MET), vascular endothelial growth factor receptor 1 (VEGF-R1), and insulin-like growth factor 1 receptor (IGF-1R). There were no significant correlations between EGFR overexpression and worse DFS or PFS. EGFR overexpression was associated with worse OS cutaneous and nasal melanoma, but not uveal melanoma. However, MET overexpression was related to worse OS in both cutaneous and uveal melanoma. Furthermore, EGFR overexpression was associated with a worse OS in Europe compared to other geographic areas. Moreover, EGFR and MET overexpression showed significant prognostic value in patients with the cut-off "≥10% staining". Conclusions: Our findings build concrete evidence that overexpression of RTKs is associated with poor prognosis and clinicopathology in melanoma, highlighting RTK expression has the potential to inform individualized combination therapies and accurate prognostic evaluation.

5.
Am J Cancer Res ; 12(7): 3464-3478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968334

RESUMEN

Cyclin D2 (CCND2) is abnormally overexpressed in many tumor types and has been associated with tumor cell proliferation. Although the important role of miR-1297 is well established, the molecular mechanism between CCND2 and miR-1297 in osteosarcoma (OS) has not been determined. In the present study, we found CCND2 was highly expressed in OS cells, and its downregulation suppressed cell proliferation, resulting in G1 phase cell cycle arrest. In contrast, miR-1297 was lowly expressed in OS compared to normal tissue. Several data platforms predicted that CCND2 was a target of miR-1297, which was validated by a dual-luciferase reporter assay that revealed miR-1297 could bind with CCND2-3'UTR. miR-1297 overexpression greatly inhibited CCND2 protein expression and exerted the same phenotypic effect as CCND2 downregulation in OS cells. Furthermore, miR-1297 inhibition could also be rescued by CCND2. Nude mice injected cells stable overexpressing miR-1297 OS cells showed lower size and tumor weight. Moreover, lower fluorescence activity recorded by in vivo imaging system and bone erosion revealed by microCT in the miR-1297 group demonstrated miR-1297 inhibited OS tumor growth via CCND2. Our findings demonstrated that miR-1297 can inhibit proliferation and tumor growth in OS by directly targeting CCND2, which indicates that miR-1297 may represent a novel therapeutic target for OS.

6.
Front Oncol ; 12: 880459, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837104

RESUMEN

Research on the implications of ferroptosis in tumors has increased rapidly in the last decades. There are evidences that ferroptosis is involved in several aspects of cancer biology, including tumor progression, metastasis, immunomodulation, and therapeutic response. Nonetheless, the interaction between ferroptosis-related lncRNAs (FRLs) and the osteosarcoma immune microenvironment is poorly understood. In this study, a risk model composed of FRLs was developed using univariate and LASSO Cox regression analyses. On the basis of this model, FRL scores were calculated to systematically explore the role of the model in predicting the prognosis and immune characteristics of osteosarcoma patients. Survival analysis showed that osteosarcoma samples with lower FRL-score had better overall survival. After predicting the abundance of immune cells in osteosarcoma microenvironment by single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE analysis, we found that the FRL-score could distinguish immune function, immune score, stromal score, tumor purity, and tumor infiltration of immune cells in different osteosarcoma patients. In addition, FRL-score was also associated with immune checkpoint gene expression and half-maximal inhibitory concentration of chemotherapeutic agents. Finally, we confirmed that knockdown of RPARP-AS1 suppressed the malignant activity of osteosarcoma cells in vitro experiments. In general, the FRL-based prognostic signature could promote our understanding of the immune microenvironment characteristics of osteosarcoma and guide more effective treatment regimens.

7.
Am J Transl Res ; 14(4): 2501-2526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559393

RESUMEN

OBJECTIVE: Osteosarcoma is the most frequent primary bone malignancy, associated with frequent recurrence and lung metastasis. RNA-binding proteins (RBPs) are pivotal in regulating several aspects of cancer biology. Nonetheless, interaction between RBPs and the osteosarcoma immune microenvironment is poorly understood. We investigated whether RBPs can predict prognosis and immunotherapy response in osteosarcoma patients. METHODS: We constructed an RBP-related prognostic signature (RRPS) by univariate coupled with multivariate analyses and verified the independent prognostic efficacy of the signature. Single-sample Gene Set Enrichment Analysis (ssGSEA) along with ESTIMATE analysis were carried out to investigate the variations in immune characteristics between subgroups with various RRPS-scores. Furthermore, we investigatedpossible small molecule drugs using the connectivity map database and validated the expression of hub RBPs by qRT-PCR. RESULTS: The RRPS, consisting of seven hub RBPs, was an independent prognostic factor compared to traditional clinical features. The RRPS could distinguish immune functions, immune score, stromal score, tumor purity and tumor infiltration by immune cells in different osteosarcoma subjects. Additionally, patients with high RRPS-scores had lower expression of immune checkpoint genes than patients with low RRPS-scores. We finally identified six small molecule drugs that may improve prognosis in osteosarcoma patients and substantiated notable differences in the contents of these RBPs. CONCLUSION: We evaluated the prognostic value and clinical application of an RBPs-based prognostic signature and identified promising biomarkers to predict immune cell infiltration and immunotherapy response in osteosarcoma.

8.
Am J Transl Res ; 13(11): 12264-12284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956452

RESUMEN

Osteosarcoma is a primary malignant bone tumor that occurs frequently in children and adolescents and has a propensity for drug resistance, recurrence, and metastasis. The purpose of this study was to identify potential target genes to predict metastasis and survival in patients with osteosarcoma. We analyzed gene expression profiles and corresponding clinical data of patients with osteosarcoma in the Gene Expression Omnibus database and identified 202 genes that were differentially expressed between osteosarcoma cells and normal osteoblasts. Univariate and multivariable Cox regression analyses identified four risk genes that affected osteosarcoma prognosis: MCAM, ENPEP, LRRC1, and CPE. Independent prognostic analyses and clinical correlation studies showed that the four risk genes constituted an independent prognostic signature that correlated with survival and clinical parameters including age and distant metastasis. In a single-sample Gene Set Enrichment Analysis, risk scores based on the prognostic signature correlated with tumor infiltration by immune cells and immune functions in osteosarcoma. A subsequent analysis showed that the expression levels of the four genes in the prognostic signature were predictive of overall survival and metastasis-free survival of patients with osteosarcoma. Furthermore, Human Cancer Metastasis Database and qRT-PCR analyses demonstrated that the four risk genes are overexpressed in osteosarcoma tissues and cell lines. In summary, we developed and validated a four-gene prognostic signature that may be useful in osteosarcoma diagnosis and metastasis prediction.

9.
Front Genet ; 12: 780780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899864

RESUMEN

Osteosarcoma is a common malignant bone tumor with a propensity for drug resistance, recurrence, and metastasis. A growing number of studies have elucidated the dual role of pyroptosis in the development of cancer, which is a gasdermin-regulated novel inflammatory programmed cell death. However, the interaction between pyroptosis and the overall survival (OS) of osteosarcoma patients is poorly understood. This study aimed to construct a prognostic model based on pyroptosis-related genes to provide new insights into the prognosis of osteosarcoma patients. We identified 46 differentially expressed pyroptosis-associated genes between osteosarcoma tissues and normal control tissues. A total of six risk genes affecting the prognosis of osteosarcoma patients were screened to form a pyroptosis-related signature by univariate and LASSO regression analysis and verified using GSE21257 as a validation cohort. Combined with other clinical characteristics, including age, gender, and metastatic status, we found that the pyroptosis-related signature score, which we named "PRS-score," was an independent prognostic factor for patients with osteosarcoma and that a low PRS-score indicated better OS and a lower risk of metastasis. The result of ssGSEA and ESTIMATE algorithms showed that a lower PRS-score indicated higher immune scores, higher levels of tumor infiltration by immune cells, more active immune function, and lower tumor purity. In summary, we developed and validated a pyroptosis-related signature for predicting the prognosis of osteosarcoma, which may contribute to early diagnosis and immunotherapy of osteosarcoma.

10.
Arch Orthop Trauma Surg ; 141(7): 1241-1251, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33507375

RESUMEN

INTRODUCTION: Osteoarthritis (OA), which has a high incidence in the elderly, brings a huge economic burden to society. MSCs (Mesenchymal Stem Cells) have shown great multidirectional differentiation potential which are expected to treat OA, and numerous clinical trials have been conducted. However, the efficacy and safety of the MSCs still need to be further integrated and analyzed. MATERIALS AND METHODS: We searched several databases (PubMed, EMBASE, Scopus, Web of Science, Cochrane Library, Ovid, and ScienceDirect) for assessing eligible trials that randomized controlled trials, hyaluronic acid as control, and MSCs injection to treat OA. Vitro studies and animal studies were excluded. Search terms were: "cartilage," "clinical trial," "mesenchymal," "stromal" and "stem cell", "osteoarthritis". The preliminary guidelines and study protocol were published online at PROSPERO. RESULTS: Many assessment scales could not be improved significantly after 6 months. However, most of the scales were significantly improved after 12 months, indicating that compared with hyaluronic acid, stem cells could relieve OA symptoms significantly. No serious adverse effect was found. CONCLUSION: There are significant therapeutic effects on joint function, symptoms, and no permanent adverse effect has been found after stem cell treatment. It is promising to apply intro-articular injection of stem cells for OA to clinical application. More researches are needed to supplement present deficiencies.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Osteoartritis de la Rodilla/terapia , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
11.
Stem Cell Res Ther ; 11(1): 445, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076978

RESUMEN

BACKGROUND: Osteonecrosis of femoral head (ONFH) is a seriously degenerative disease with no effective therapies to slow its progression. Several studies have reported short-term efficacy of stem cells on early-stage ONFH. However, its long-term effect was still unclear especially on progression events. This study was performed to evaluate the long-term efficacy and safety of stem cells and analyze its optimal age group and cell number. METHODS: Our review was registered on PROSPERO ( http://www.crd.york.ac.uk/PROSPERO ), registration number CRD42020136094. Following PRISMA guideline, we searched 8 electronic databases on January 5, 2020, and rigorous random controlled trials (RCTs) utilizing stem cell therapy on early-stage ONFH were included. Quality and bias were analyzed. Pooled analysis was performed to assess difference between various outcomes. RESULTS: A total of 13 RCTs (619 patients with 855 hips) were included. The application of stem cells significantly delayed collapse of femoral head(I2, 70%; RR, 0.54; 95% CI, 0.33 to 0.89; P < .00001) and total hip replacement (THR) (I2, 68%; RR, 0.55; 95% CI, 0.34 to 0.90; P = .02) in the long term. It effectively decreased the events of collapse of femoral head (≥ 60 months) (I2, 0%; RR, 0.37; 95% CI, 0.28 to 0.49; P < .00001) and THR (> 36 months) (I2, 0%; RR, 0.32; 95% CI, 0.23 to 0.44; P < .00001). There existed a beneficial effect for patients under 40 (Collapse of femoral head: I2, 56%; RR, 0.41; 95% CI, 0.23 to 0.76; P = .004) (THR: I2, 0%; RR, 0.31; 95% CI, 0.23 to 0.42; P < .00001). In addition, quantity of stem cells at 108 magnitude had better effects on disease progression events (I2, 0%; RR, 0.34; 95%CI, 0.16 to 0.74; P = .007). Besides, there were no significant differences on adverse events between the stem cell group and control group (I2, 0%; RR, 0.82; 95% CI, 0.39 to 1.73; P = .60). CONCLUSION: Our findings build solid evidence that stem cell therapy could be expected to have a long-term effect on preventing early-stage ONFH patients from progression events, such as collapse of femoral head and total hip replacement. Furthermore, patients under 40 may be an ideal age group and the optimal cell number could be at 108 magnitude for this therapy. Further studies including strict RCTs are required to evaluate a clear effect of stem cells on ideal patient profile and the procedures of implantation.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Necrosis de la Cabeza Femoral/terapia , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Trasplante de Células Madre/efectos adversos , Resultado del Tratamiento
12.
Am J Transl Res ; 11(8): 5114-5121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497227

RESUMEN

Intervertebral disc degeneration (IDD) is a form of chronic inflammation and is one of the most common disorders reported to be involved in low back pain (LBP). The pathophysiology of degeneration is not completely understood, but the consensus is that the degradation of extracellular matrix (ECM) proteins in the disc is the leading factor contributing to IDD. High temperature requirement A1 (HtrA1) is serine protease that has been shown to be increased in degenerated intervertebral discs as a result of an increase in the expression of matrix metalloproteinases (MMPs), but no study has focused on the effect of HtrA1 on a disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs). In the present study, we successfully isolated human nucleus pulposus cells (HNPCs) from IDD patients who were our research subjects to elaborate on the potential role of HtrA1 in the pathogenesis of IDD. We confirmed that HtrA1 has the potential to induce the expression of ADAMTS-5 in a dose-dependent manner. Consistently, this was mediated by the ERK, NF-κB and JNK pathways. By using inhibitors of these pathways, the increase in ADAMTS-5 could be reduced. Our findings indicated that HtrA1 can induce the expression of ADAMTS-5 in HNPCs via the ERK/NF-κB/JNK signaling pathway, and our study also elucidated the involved induction mechanisms in HNPCs, which may provide new insights for the treatment of IDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...