Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39053237

RESUMEN

In this study, our objective was to investigate the impact of dietary butyric acid (BA) on the homeostasis mechanism of Pacific shrimp under cold stress. Specifically, we analyzed its effects on immunity, antioxidant capacity, gene expression, and metabolomics response. To carry out this research, Litopenaeus vannamei were fed a diet supplemented with BA for 8 weeks. Following this feeding period, a total of 180 shrimp, with an average weight of 12.76 ± 0.38 g, were exposed to cold conditions, with the temperature decreasing from 28 °C to 14 °C within an hour. The results of our study revealed survival rates ranging from 90 % to 100 %. Shrimp that were fed a diet containing 1.5 % BA exhibited a significant increase in acid phosphatase (ACP) and alkaline phosphatase (AKP) activity. Conversely, the control groups showed an increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) activity. Shrimp that consumed diets containing 1.5 % BA displayed the lowest malondialdehyde (MDA) levels with the highest superoxide dismutase (SOD) content. The shrimp fed the BA diet exhibited tightly organized hepatic tubules with a star-shaped lumen filled with numerous B and R cells. Furthermore, shrimp fed the BA diet demonstrated a significant increase in caspase 3 (CASP) expression. There were no significant variations in the expression levels of prophenoloxidase (ProPO), manganese superoxide dismutase (MnSOD), and glutathione S-transferase (GST) The metabolites of Dl-carnitine, acetyl-l-carnitine, propionylcarnitine, hexanoylcarnitine, palmitoylcarnitine, decanoylcarnitine, and Dl-carnitine exhibited significantly increased expression in shrimp that were fed BA, suggesting their role in the lipolysis process. Based on the findings, adding 2 % BA to the diet of Pacific shrimp helps reduce inflammation and oxidative stress when they are under cold stress.

2.
Fish Shellfish Immunol ; 150: 109610, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734117

RESUMEN

This study looked at the effects of adding butyric acid (BA) to the diets of juvenile Pacific shrimp and how it affected their response to survival, immunity, histopathological, and gene expression profiles under heat stress. The shrimp were divided into groups: a control group with no BA supplementation and groups with BA inclusion levels of 0.5 %, 1 %, 1.5 %, 2 %, and 2.5 %. Following the 8-week feeding trial period, the shrimp endured a heat stress test lasting 1 h at a temperature of 38 °C. The results showed that the control group had a lower survival rate than those given BA. Interestingly, no mortality was observed in the group receiving 1.5 % BA supplementation. Heat stress had a negative impact on the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in the control group. Still, these activities were increased in shrimp fed the BA diet. Similar variations were observed in AST and ALT fluctuations among the different groups. The levels of triglycerides (TG) and cholesterol (CHO) increased with high temperatures but were reduced in shrimp-supplemented BA. The activity of an antioxidant enzyme superoxide dismutase (SOD) increased with higher BA levels (P < 0.05). Moreover, the groups supplemented with 1.5 % BA exhibited a significant reduction in malondialdehyde (MDA) content (P < 0.05), suggesting the potential antioxidant properties of BA. The histology of the shrimp's hepatopancreas showed improvements in the groups given BA. Conversely, the BA significantly down-regulated the HSPs and up-regulated MnSOD transcript level in response to heat stress. The measured parameters determine the essential dietary requirement of BA for shrimp. Based on the results, the optimal level of BA for survival, antioxidant function, and immunity for shrimp under heat stress is 1.5 %.


Asunto(s)
Alimentación Animal , Ácido Butírico , Dieta , Suplementos Dietéticos , Respuesta al Choque Térmico , Hepatopáncreas , Penaeidae , Animales , Penaeidae/inmunología , Penaeidae/genética , Penaeidae/fisiología , Penaeidae/efectos de los fármacos , Hepatopáncreas/inmunología , Hepatopáncreas/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Respuesta al Choque Térmico/efectos de los fármacos , Ácido Butírico/administración & dosificación , Calor/efectos adversos , Inmunidad Innata/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Distribución Aleatoria , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología
3.
Metabolites ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557306

RESUMEN

Groupers with an initial body weight of 9.10 ± 0.03 g were selected to investigate whether dietary addition of 0 (G0) and 1800 mg/kg glycerol monolaurate (GML, G1800) could alleviate the oxidative stress response and intestinal flora imbalance after 0, 6, 12, and 24 h of salinity change in grouper. Experimental results show that the dietary addition of GML significantly reduced the liver MDA content and increased the SOD activity of grouper. The gene expression of CAT and SOD increased and then decreased with time after adding 1800 mg/kg GML, and the highest values were significantly higher than those of the control group. Salinity change had a slight effect on the top four intestinal flora composition of grouper at 0, 12, and 24 h, with changes occurring only at 6 h when Cyanobacteria replaced Actinobacteria. The addition of dietary GML slowed down the intestinal flora disorder, inhibited the colonization of harmful bacterium Vibrio, and promoted the abundance of beneficial bacterium Bacillus. In conclusion, dietary GML significantly reduced the oxidative damage caused by sudden changes in salinity, improved the antioxidant capacity, and alleviated the intestinal flora imbalance in juvenile grouper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA