Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686992

RESUMEN

Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.


Asunto(s)
Sistemas CRISPR-Cas , Neuronas , Animales , Neuronas/metabolismo , Neuronas/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Conectoma
2.
Nature ; 623(7987): 562-570, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880372

RESUMEN

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepción Visual , Animales , Acetilcolina/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Histamina/metabolismo , Neurotransmisores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepción Visual/fisiología , Percepción Visual/efectos de la radiación
3.
Elife ; 122023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37440432

RESUMEN

Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.


Asunto(s)
Discapacidad Intelectual , Vesículas Sinápticas , Animales , Ratones , Glutamina/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Proteómica , Vesículas Sinápticas/metabolismo
4.
Genetics ; 221(3)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35579349

RESUMEN

Liver Kinase B1 (LKB1) is known as a master kinase for 14 kinases related to the adenosine monophosphate-activated protein kinase. Two of them salt inducible kinase 3 and adenosine monophosphate-activated protein kinase α have previously been implicated in sleep regulation. We generated loss-of-function mutants for Lkb1 in both Drosophila and mice. Sleep, but not circadian rhythms, was reduced in Lkb1-mutant flies and in flies with neuronal deletion of Lkb1. Genetic interactions between Lkb1 and threonine to alanine mutation at residue 184 of adenosine monophosphate-activated protein kinase in Drosophila sleep or those between Lkb1 and Threonine to Glutamic Acid mutation at residue 196 of salt inducible kinase 3 in Drosophila viability have been observed. Sleep was reduced in mice after virally mediated reduction of Lkb1 in the brain. Electroencephalography analysis showed that nonrapid eye movement sleep and sleep need were both reduced in Lkb1-mutant mice. These results indicate that liver kinase B1 plays a physiological role in sleep regulation conserved from flies to mice.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Sueño/genética , Treonina
5.
Sleep ; 44(7)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33493349

RESUMEN

Sleep and arousal are both important for animals. The neurotransmitter acetylcholine (ACh) has long been found to promote both sleep and arousal in mammals, an apparent paradox which has also been found to exist in flies, causing much confusion in understanding sleep and arousal. Here, we have systematically studied all 13 ACh receptors (AChRs) in Drosophila to understand mechanisms underlying ACh function in sleep and arousal. We found that exogenous stimuli-induced arousal was decreased in nAChRα3 mutants, whereas sleep was decreased in nAChRα2 and nAChRß2 mutants. nAChRα3 functions in dopaminergic neurons to promote exogenous stimuli-induced arousal, whereas nAChRα2 and ß2 function in octopaminergic neurons to promote sleep. Our studies have revealed that a single transmitter can promote endogenous sleep and exogenous stimuli-induced arousal through distinct receptors in different types of downstream neurons.


Asunto(s)
Nivel de Alerta , Drosophila , Animales , Neuronas , Receptores Colinérgicos , Sueño
6.
Neuron ; 101(5): 876-893.e4, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30799021

RESUMEN

We define the chemoconnectome (CCT) as the entire set of neurotransmitters, neuromodulators, neuropeptides, and their receptors underlying chemotransmission in an animal. We have generated knockout lines of Drosophila CCT genes for functional investigations and knockin lines containing Gal4 and other tools for examining gene expression and manipulating neuronal activities, with a versatile platform allowing genetic intersections and logic gates. CCT reveals the coexistence of specific transmitters but mutual exclusion of the major inhibitory and excitatory transmitters in the same neurons. One neuropeptide and five receptors were detected in glia, with octopamine ß2 receptor functioning in glia. A pilot screen implicated 41 genes in sleep regulation, with the dopamine receptor Dop2R functioning in neurons expressing the peptides Dilp2 and SIFa. Thus, CCT is a novel concept, chemoconnectomics a new approach, and CCT tool lines a powerful resource for systematic investigations of chemical-transmission-mediated neural signaling circuits underlying behavior and cognition.


Asunto(s)
Conectoma/métodos , Neurotransmisores/metabolismo , Transmisión Sináptica , Animales , Drosophila melanogaster , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...