Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 126(5): 742-751, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35099953

RESUMEN

X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of the newly discovered two non-classical isomers C2-C76(NC2) and C1-C76(NC3) with their derivatives C2-C76(NC2)(CF3)14 and C1-C76(NC3)Cl24, as well as the non-IPR(isolated pentagon rule) isomer C1-#17418C76 with its embedded metal fullerene U@C1-#17418C76 have been calculated at the density functional theory (DFT) level. The electronic structure after chlorination is significantly different in the simulated X-ray spectrum. Both XPS and NEXAFS spectra reflect obvious isomer dependence, indicating that the "fingerprint" in X-ray spectroscopy can provide an effective means for the identification of the above-mentioned fullerene isomers. Time-dependent DFT was used to simulate the ultraviolet-visible absorption spectrum of U@C1-#17418C76. The calculated results are in good agreement with the experimental consequence. This work reveals that theoretically simulated X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the electronic structure of fullerenes and the identification of isomers in future experimental and theoretical fields.

2.
ACS Omega ; 6(41): 27101-27111, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693130

RESUMEN

X-ray photoelectron and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of a newly discovered nonclassical isomer C 2v -C66(NC), and two classical fullerene isomers C 2-#4466C66 and C s -#4169C66 with their hydrogenated derivatives [C 2v -C66H4(NC), C 2-#4466C66H4, and C s -#4169C66H4] have been calculated at the density functional theory (DFT) level. Significant differences were observed in the electronic structures and simulated X-ray spectra after hydrogenation. Simultaneously, both X-ray photoelectron and NEXAFS spectra reflected conspicuous isomer dependence, indicating that the "fingerprints" in the X-ray spectra can offer an effective method for identifying the above-mentioned fullerene isomers. The simulated ultraviolet-visible (UV-vis) absorption spectroscopy of C 2v -C66H4(NC) has also been generated by means of the time-dependent DFT method, and the calculations are well consistent with the experimental results. Consequently, this work reveals that X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the fullerene electronic structure and isomer identification on the future experimental and theoretical fullerene domains.

3.
RSC Adv ; 11(3): 1472-1481, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35424081

RESUMEN

The traditional classical fullerene is only composed of pentagons and hexagons, with many different topologies, of which only a few structures conform to the isolated pentagon rule (IPR), which means all five-membered rings are separated by hexagons, whereas isomers that violate the rule are called non-IPR isomers. In contrast, the non-classical fullerene consists of other kinds of polygons such as squares and heptagons in addition to pentagons and hexagons. X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra and X-ray emission spectra (XES), as well as the ground-state electronic/geometrical structures of the important non-IPR isomers C 3v-#1205C58 and C 2-#1078C58, and the remarkable non-classical isomer C s-C58(NC) with its two fluorides C s-C58(NC)F18(A) and C s-C58(NC)F18(B), have been computed at the density functional theory (DFT) level. Significant differences in the electronic structures and simulated X-ray spectra have been observed after fluorination. Meanwhile, strong isomer dependence has been shown in these spectra, which means the "fingerprint" in the X-ray spectra can effectively identify the above-mentioned fullerene isomers. As a consequence, the work can provide useful information especially isomer identification for experimental and theoretical research in fullerene science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...