Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Clin Oncol ; 13(7): 616-629, 2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-36157157

RESUMEN

BACKGROUND: The development of precision medicine is essential for personalized treatment and improved clinical outcome, whereas biomarkers are critical for the success of precision therapies. AIM: To investigate whether iCEMIGE (integration of CEll-morphometrics, MIcro biome, and GEne biomarker signatures) improves risk stratification of breast cancer (BC) patients. METHODS: We used our recently developed machine learning technique to identify cellular morphometric biomarkers (CMBs) from the whole histological slide images in The Cancer Genome Atlas (TCGA) breast cancer (TCGA-BRCA) cohort. Multivariate Cox regression was used to assess whether cell-morphometrics prognosis score (CMPS) and our previously reported 12-gene expression prognosis score (GEPS) and 15-microbe abundance prognosis score (MAPS) were independent prognostic factors. iCEMIGE was built upon the sparse representation learning technique. The iCEMIGE scoring model performance was measured by the area under the receiver operating characteristic curve compared to CMPS, GEPS, or MAPS alone. Nomogram models were created to predict overall survival (OS) and progress-free survival (PFS) rates at 5- and 10-year in the TCGA-BRCA cohort. RESULTS: We identified 39 CMBs that were used to create a CMPS system in BCs. CMPS, GEPS, and MAPS were found to be significantly independently associated with OS. We then established an iCEMIGE scoring system for risk stratification of BC patients. The iGEMIGE score has a significant prognostic value for OS and PFS independent of clinical factors (age, stage, and estrogen and progesterone receptor status) and PAM50-based molecular subtype. Importantly, the iCEMIGE score significantly increased the power to predict OS and PFS compared to CMPS, GEPS, or MAPS alone. CONCLUSION: Our study demonstrates a novel and generic artificial intelligence framework for multimodal data integration toward improving prognosis risk stratification of BC patients, which can be extended to other types of cancer.

2.
Cells ; 10(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34685578

RESUMEN

Secreted angiopoietin/angiopoietin-like (ANGPT/ANGPTL) proteins are involved in many biological processes. However, the role of these proteins in human breast cancers (BCs) remains largely unclear. Here, we conducted integrated omics analyses to evaluate the clinical impact of ANGPT/ANGPTL proteins and to elucidate their biological functions. In BCs, we identified rare mutations in ANGPT/ANGPTL genes, frequent gains of ANGPT1, ANGPT4, and ANGPTL1, and frequent losses of ANGPT2, ANGPTL5, and ANGPTL7, but observed that ANGPTL1, 2, and 4 were robustly downregulated in multiple datasets. The expression levels of ANGPTL1, 5, and 8 were positively correlated with overall survival (OS), while the expression levels of ANGPTL4 were negatively correlated with OS. Additionally, the expression levels of ANGPTL1 and 7 were positively correlated with distant metastasis-free survival (DMFS), while the expression levels of ANGPT2 and ANGPTL4 were negatively correlated with DMFS. The prognostic impacts of ANGPT/ANGPTL genes depended on the molecular subtypes and on clinical factors. We discovered that various ANGPT/ANGPTL genes were co-expressed with various genes involved in different pathways. Finally, with the exception of ANGPTL3, the remaining genes showed significant correlations with cancer-associated fibroblasts, endothelial cells, and microenvironment score, whereas only ANGPTL6 was significantly correlated with immune score. Our findings provide strong evidence for the distinct clinical impact and biological function of ANGPT/ANGPTL proteins, but the question of whether some of them could be potential therapeutic targets still needs further investigation in BCs.


Asunto(s)
Proteínas Similares a la Angiopoyetina/metabolismo , Angiopoyetinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Pronóstico
3.
Foods ; 10(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498638

RESUMEN

Trichomoniasis in humans, caused by the protozoal parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted disease, while Tritrichomonas foetus causes trichomonosis, an infection of the gastrointestinal tract and diarrhea in farm animals and domesticated cats. As part of an effort to determine the inhibitory effects of plant-based extracts and pure compounds, seven commercially available cherry tomato varieties were hand-peeled, freeze-dried, and pounded into powders. The anti-trichomonad inhibitory activities of these peel powders at 0.02% concentration determined using an in vitro cell assay varied widely from 0.0% to 66.7% against T. vaginalis G3 (human); from 0.9% to 66.8% for T. foetus C1 (feline); and from 0.0% to 81.3% for T. foetus D1 (bovine). The organic Solanum lycopersicum var. cerasiforme (D) peels were the most active against all three trichomonads, inhibiting 52.2% (G3), 66.8% (C1), and 81.3% (D1). Additional assays showed that none of the powders inhibited the growth of foodborne pathogenic bacteria, pathogenic fungi, or non-pathogenic lactobacilli. Tomato peel and pomace powders with high content of described biologically active compounds could serve as functional food and feed additives that might help overcome adverse effects of wide-ranging diseases and complement the treatment of parasites with the anti-trichomonad drug metronidazole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...