Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401447, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693087

RESUMEN

Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.

2.
Adv Sci (Weinh) ; : e2402240, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605604

RESUMEN

Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.

3.
Small ; : e2309791, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095488

RESUMEN

The hydrogen evolution reaction (HER) activity of defect-stabilized low-Pt-loading catalysts is closely related with defect type in support materials, while the knowledge about the effect of higher-dimensional defects on the property and activity of trapped Pt atomic species is scarce. Herein, small size (5-10 nm) TiO2 nanoparticles with abundant surface step defects (one kind of line defect) are used to direct the uniform anchoring of Pt atomic clusters (Pt-ACs) via Pt─O─Ti linkage. The as-made low-Pt catalysts (Pt-ACs/S-TiO2 -NP) exhibit exceptional HER intrinsic activity due to the unique step-site Pi-O-Ti species, in which the mass activity and turnover frequency are as high as 21.46 A mg Pt -1 and 21.69 s-1 at the overpotential of 50 mV, both far beyond those of benchmark Pt/C catalysts and other Pt-ACs/TiO2 samples with less step sites. Spectroscopic measurements and theoretical calculations reveal that the step-defect-located Pt─O─Ti sites can simultaneously induce the charge transfer from TiO2 substrate to the trapped Pt-ACs and the downshift of d-band center, which helps the proton reduction to H* intermediates and the following hydrogen desorption process, thus improving the HER. The work provides a deep insight on the interactions between high-dimensional defect and well-dispersed atomic metal motifs for superior HER catalysis.

4.
Adv Sci (Weinh) ; 10(9): e2206204, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36703610

RESUMEN

The bottleneck of large-scale implementation of electrocatalytic water-splitting technology lies in lacking inexpensive, efficient, and durable catalysts to accelerate the sluggish oxygen evolution reaction kinetics. Owing to more metallic features, transition metal telluride (TMT) with good electronic conductivity holds promising potential as an ideal type of electrocatalysts for oxygen evolution reaction (OER), whereas most TMTs reported up to now still show unsatisfactory OER performance that is far below corresponding sulfide and selenide counterparts. Here, the activation and stabilization of cobalt telluride (CoTe) nanoarrays toward OER through dual integration of sulfur (S) doping and surface oxidization is reported. The as-synthesized CoO@S-CoTe catalyst exhibits a low overpotential of only 246 mV at 10 mA cm-2 and a long-term stability of more than 36 h, outperforming commercial RuO2 and other reported telluride-based OER catalysts. The combined experimental and theoretical results reveal that the enhanced OER performance stems from increased active sites exposure, improved charge transfer ability, and optimized electronic state. This work will provide a valuable guidance to release the catalytic potential of telluride-based OER catalysts via interface modulating engineering.

5.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432999

RESUMEN

The low fire safety performance (flame retardant and antistatic properties) of poly(methyl methacrylate) (PMMA) has severely limited practical applications. Here, a phosphorylated Zn-based metal-organic framework (ZIF-8-P) is employed as an effective flame retardant and antistatic agent to reduce the fire risk of PMMA. Encouragingly, the as-prepared PMMA/ZIF-8-P composite demonstrated not merely better mechanical properties (e.g., a rise of ca. 136.9% and 175.0% in the reduced modulus and hardness; a higher storage modulus), but also efficient fire safety properties (e.g., lower surface resistance; a decrease of ca. 73.1% in the peak heat release rate; a lower amount of total pyrolysis products), surpassing those of pure PMMA and a PMMA/ZIF-8 composite without phytic acid modification. Mechanism analysis is conducted to reveal the critical role of catalytic charring, char reinforcing, and the dilution of nonflammable gases from ZIF-8 additives during the combustion and pyrolysis process. Our study paves a promising way to achieve high performance PMMA composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...