Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Rep ; 22(4): 1079-1089, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386128

RESUMEN

Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Restricción Calórica/métodos , Dieta Reductora/métodos , Obesidad/genética , Grasa Subcutánea/metabolismo , Pérdida de Peso/fisiología , Animales , Humanos , Masculino , Ratones , Obesidad/metabolismo
2.
Sci Rep ; 7: 42916, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205634

RESUMEN

Coronary artery disease (CAD) is the most prevalent cause of mortality and morbidity worldwide and the number of individuals at risk is increasing. To better manage cardiovascular diseases, improved tools for risk prediction including the identification of novel accurate biomarkers are needed. MicroRNA (miRNA) are essential post-transcriptional modulators of gene expression leading to mRNA suppression or translational repression. Specific expression profiles of circulating miRNA have emerged as potential noninvasive diagnostic biomarkers of diseases. The aim of this study was to identify the potential diagnostic value of circulating miRNA with CAD. Circulating miR-145, miR-155, miR-92a and let-7c were selected and validated by quantitative PCR in 69 patients with CAD and 30 control subjects from the cross-sectional study GENES. The expression of miR-145, miR-155 and let-7c showed significantly reduced expression in patients with CAD compared to controls. Multivariate logistic regression analysis revealed that low levels of circulating let-7c, miR-145 and miR-155 were associated with CAD. Receiver operating curves analysis showed that let-7c, miR-145 or miR-155 were powerful markers for detecting CAD. Furthermore, we demonstrated that the combination of the three circulating miRNA managed to deliver a specific signature for diagnosing CAD.


Asunto(s)
Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , MicroARNs/sangre , Anciano , Área Bajo la Curva , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/genética , Estudios Transversales , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Biochem Biophys Res Commun ; 438(2): 257-63, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23872063

RESUMEN

Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.


Asunto(s)
Quimiocina CCL7/fisiología , Túbulos Renales/metabolismo , Animales , Línea Celular , Quimiocina CCL7/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Inflamación/patología , Riñón/metabolismo , Túbulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/metabolismo , Factores de Tiempo
4.
PLoS Genet ; 8(9): e1002959, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028366

RESUMEN

Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.


Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica/genética , Lipogénesis/genética , Obesidad , Índice de Masa Corporal , Restricción Calórica , Ingestión de Energía/genética , Femenino , Humanos , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Factores Sexuales , Pérdida de Peso
5.
Nucleic Acids Res ; 40(7): e51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22228834

RESUMEN

Genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR). Currently, there is no alternative to RT(-) controls to evaluate the impact of the gDNA background on RT-PCR data. We propose a novel method (ValidPrime) that is more accurate than traditional RT(-) controls to test qPCR assays with respect to their sensitivity toward gDNA. ValidPrime measures the gDNA contribution using an optimized gDNA-specific ValidPrime assay (VPA) and gDNA reference sample(s). The VPA, targeting a non-transcribed locus, is used to measure the gDNA contents in RT(+) samples and the gDNA reference is used to normalize for GOI-specific differences in gDNA sensitivity. We demonstrate that the RNA-derived component of the signal can be accurately estimated and deduced from the total signal. ValidPrime corrects with high precision for both exogenous (spiked) and endogenous gDNA, contributing ∼60% of the total signal, whereas substantially reducing the number of required qPCR control reactions. In conclusion, ValidPrime offers a cost-efficient alternative to RT(-) controls and accurately corrects for signals derived from gDNA in RT-qPCR.


Asunto(s)
Contaminación de ADN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , ADN/análisis , Cartilla de ADN , Genómica , Ratones , Ratones Endogámicos C57BL
6.
Diabetes ; 58(7): 1558-67, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19401422

RESUMEN

OBJECTIVE: We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS: Twenty-two obese women followed a dietary intervention program composed of an energy restriction phase with a 4-week very-low-calorie diet and a weight stabilization period composed of a 2-month low-calorie diet followed by 3-4 months of a weight maintenance diet. At each time point, a euglycemic-hyperinsulinemic clamp and subcutaneous adipose tissue biopsies were performed. Adipose tissue gene expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS: Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary intervention. The second comprised 511 mainly macrophage genes involved in inflammatory pathways that were not changed or upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. Accordingly, macrophage markers were upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. The increase in glucose disposal rates in each dietary phase was associated with variation in expression of sets of 80-110 genes that differed among energy restriction, weight stabilization, and dietary intervention. CONCLUSIONS: Adipose tissue macrophages and adipocytes show distinct patterns of gene regulation and association with insulin sensitivity during the various phases of a dietary weight loss program.


Asunto(s)
Adipocitos/patología , Dieta Reductora , Insulina/fisiología , Macrófagos/patología , Obesidad/patología , Biopsia , Peso Corporal , Proteína C-Reactiva/genética , Ingestión de Energía , Perfilación de la Expresión Génica , Variación Genética , Técnica de Clampeo de la Glucosa , Humanos , Obesidad/fisiopatología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Endocrinology ; 149(6): 3137-47, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18325993

RESUMEN

Somatostatin is a neuropeptide that inhibits exocrine and endocrine secretions of several hormones and negatively regulates cell proliferation. These events are mediated through somatostatin engagement on one of five G protein-coupled receptors named SSTR1 to STTR5. Somatostatin binding to SSTR2 mediates predominantly antisecretory and antiproliferative effects; two important biological activities in the gastroenteropancreatic endocrine and exocrine system. Herein we demonstrate novel regulatory sequences for human (h) SSTR2 transcription. By genomic DNA sequence analysis, we reveal two CpG islands located 3.8 kb upstream from the transcription start site. We identify a novel transcription start site and a promoter region within one of these CpG islands. We demonstrate that two epigenetic modifications, DNA methylation and histone acetylation, regulate the activation of hSSTR2 upstream promoter. Furthermore, we show that the transcription from this upstream promoter region directly correlates to hSSTR2 mRNA expression in various human cell lines. A combined treatment of a demethylating agent, 5-aza-2-deoxycytidine and a histone deacetylase inhibitor, trichostatin A, leads to increased expression of hSSTR2 mRNA in cell lines in which the CpG island is methylated. The epigenetic regulation of this promoter region results in differential expression of hSSTR2 mRNA in human cell lines. This study reveals the existence of a novel upstream promoter for the hSSTR2 gene that is regulated by epigenetic modifications, suggesting for complex control of the hSSTR2 transcription.


Asunto(s)
Cromosomas Humanos Par 17 , Regiones Promotoras Genéticas , ARN Mensajero/genética , Receptores de Somatostatina/genética , Secuencia de Bases , Cromatina/genética , Cromatina/ultraestructura , Metilación de ADN , Fosfatos de Dinucleósidos , Exones , Genes Reporteros , Humanos , Luciferasas/genética , Datos de Secuencia Molecular , Plásmidos , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico
8.
Biol Res ; 40(2): 137-53, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18064351

RESUMEN

We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.


Asunto(s)
Ozono/farmacología , Fosfoenolpiruvato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/efectos de los fármacos , Zea mays/enzimología , Fosfoenolpiruvato Carboxilasa/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Proteínas de Plantas/metabolismo , ARN Mensajero/efectos de los fármacos , ARN de Planta/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribulosa-Bifosfato Carboxilasa/efectos de los fármacos , Zea mays/genética
9.
Biol. Res ; 40(2): 137-153, 2007. graf, tab
Artículo en Inglés | LILACS | ID: lil-468185

RESUMEN

We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.


Asunto(s)
Ozono/farmacología , Fosfoenolpiruvato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/efectos de los fármacos , Zea mays/enzimología , Fosfoenolpiruvato Carboxilasa/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Mensajero/efectos de los fármacos , ARN de Planta/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/efectos de los fármacos , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...