Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38929578

RESUMEN

Background: Apolipoprotein E (APOE) gene polymorphism has been implicated in the pathogenesis of various metabolic disorders, including type 2 diabetes mellitus (T2DM). Type 2 diabetes mellitus (T2DM) is a major public health concern worldwide, including in Pakistan. Cardiovascular problems linked with T2DM have a significant impact on individuals and society. The goal of this study is to investigate the relationship between Apolipoprotein E (ApoE) genotypes, dyslipidemia, and cardiovascular complications such as ischemic heart disease (IHD) and stroke. Methods: This study was carried out on 260 subjects divided into controls and diabetics. The diabetics were further divided into four subgroups such as D1: diabetics without cardiovascular issues, D2: diabetics with heart disease, D3: diabetics with stroke, and D4: diabetics with both heart disease and stroke. Anthropometric parameters (age, BMI) and risk factors (smoking, diabetes duration, hypertension) were assessed in all groups. Serum levels of TC, TG, LDL, HDL, VLDL, creatinine, BSF, and HbA1c were also measured. Apolipoprotein E gene polymorphism was determined using PCR-RFLP. Results: Hypertension, BMI, and dyslipidemia are defined as elevated levels of total cholesterol, triglycerides, LDL, and VLDL, and decreased levels of HDL. Uncontrolled hyperglycemia (elevated fasting blood sugar and glycated hemoglobin) in T2DM was linked to vascular complications such as IHD and stroke. Hypertension was prevalent in 79.3% of the population. Stage 2 hypertension was more prevalent in all age groups. It was also noted that common genotypes in the Pakistani population are 3/3, 4/4, 2/3, and 3/4. The frequency of genotypes 3/4 and 2/3 is highest in diabetics with stroke. Genotype 3/3 is present frequently in diabetics with IHD/stroke and patients with both these complications. However, genotype 4/4 is most frequently found in diabetics with IHD. Conclusions: It is concluded that BMI, hypertension, hyperglycemia, atherosclerosis, and dyslipidemia are linked with cardiovascular complications of type 2 diabetes. Apolipoprotein E gene polymorphism is associated with cardiovascular disease in patients with diabetes by affecting the lipid profile.


Asunto(s)
Apolipoproteínas E , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Pakistán/epidemiología , Masculino , Femenino , Apolipoproteínas E/genética , Persona de Mediana Edad , Enfermedades Cardiovasculares/genética , Adulto , Polimorfismo Genético , Anciano , Factores de Riesgo , Dislipidemias/genética , Dislipidemias/complicaciones , Genotipo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones
2.
PLoS One ; 19(6): e0303134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837975

RESUMEN

In recent years, a cancer research trend has shifted towards identifying novel therapeutic compounds from natural assets for the management of cancer. In this study, we aimed to assess the cytotoxic activity of Kigelia Africana (KA) extracts on breast cancer (MDA-MB-231 and MCF-7) and noncancerous kidney cells (HEK-293T) to develop an efficient anticancer medication. We used gas chromatography mass spectrometry (GC-MS to analyze the constituents of EKA and HKA extracts meanwhile the crystal violet and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used to examine the possible cytotoxic effects of plant extracts on our cancer cell lines along with non-cancerous control. The quantitative real-time PCR (RT-PCR) was run on cell samples to evaluate the differential expression of cell proliferative markers of cancer (BCL-2 and TP53). These phytochemicals have been reported to have binding affinity for some other growth factors and receptors as well which was evaluated by the in-silico molecular docking against Bcl2, EGFR, HER2, and TP53. Our Morphological observation showed a significant difference in the cell morphology and proliferation potential which was decreased under the effect of plant extracts treatment as compared to the control samples. The ethanol extract exhibited a marked antiproliferative activity towards MDA-MB-231 and MCF-7 cell lines with IC50 = 20 and 32 µg/mL, respectively. Quantitative RT-PCR gene expression investigation revealed that the IC50 concentration of ethanolic extract regulated the levels of mRNA expression of apoptotic genes. With the target and active binding site amino acids discovered in the molecular docking investigation, TP53/Propanoic acid, 3-(2, 3, 6-trimethyl-1, 4-dioxaspiro [4.4] non-7-yl)-, methyl ester (-7.1 kcal/mol) is the best-docked ligand. The use of this plant in folk remedies justifies its high in vitro anti-cancer capabilities. This work highlights the role of phytochemicals in the inhibition of cancer proliferation. Based on all these findings, it can be concluded that EKA extract has promising anti-proliferative effect on cancerous cells but more study is required in future to further narrow down the active ingredients of total crude extract with specific targets in cancer cells.


Asunto(s)
Simulación del Acoplamiento Molecular , Extractos Vegetales , Proteína p53 Supresora de Tumor , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células MCF-7 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Células HEK293 , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Inflammation ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289578

RESUMEN

Methotrexate (MTX)-induced intestinal mucositis (IM) is a common side effect in cancer treatment that impairs the immune system and gut microbes, resulting in loss of mucosal integrity and gut barrier dysfunction. The quality of life and outcomes of treatment are compromised by IM. The present study was designed to investigate the mucoprotective potential of the benzimidazole derivative N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide (B8) on MTX-induced IM in mice. IM was induced by a single dose of MTX in mice and assessed by physical manifestations as well as biochemical, oxidative, histological, and inflammatory parameters. B8 (1, 3, 9 mg/kg) significantly reduced diarrhea score, mitigated weight loss, increased feed intake and, survival rate in a dose-dependent manner. Notably, B8 exhibited a mucoprotective effect evident through the mitigation of villus atrophy, crypt hypoplasia, diminished crypt mitotic figures, mucin depletion, and oxidative stress markers (GSH, SOD, MDA, and catalase concentration). Gene expression analysis revealed that B8 downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1ß, and nuclear factor-κB (NF-κB) and concurrently upregulated IL-10 expression in contrast to the MTX group. Further, B8 significantly improved the luminal microflora profile by augmenting the growth of Lactobacillus spp. and reducing the number of pathogenic bacteria (E. coli). Additionally, the enzyme-linked immunoassay showed that B8 decreased the levels of pro-inflammatory cytokines. Our findings suggest that B8 had mucoprotective effects against MTX-induced IM and could be used as an adjunct in chemotherapy to deter this side effect.

4.
Anal Chem ; 96(4): 1668-1677, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38226847

RESUMEN

A new matrix framework is presented in this study for the improved ionization efficiency of complex mixtures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry/imaging. Five nitro indole (NI) derivatives [3-methyl-4-nitro-1H-indole (3,4-MNI), 3-methyl-6-nitro-1H-indole (3,6-MNI), 2,3-dimethyl-4-nitro-1H-indole (2,3,4-DMNI), 2,3-dimethyl-6-nitro-1H-indole (2,3,6-DMNI), and 4-nitro-1H-indole (4-NI)] were synthesized and shown to produce both positive and negative ions with a broad class of analytes as MALDI matrices. NI matrices were compared to several common matrices, such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxylcinnamic acid (CHCA), sinapinic acid (SA), 1,5-diaminonaphthelene (1,5-DAN), and 9-aminoacridine (9-AA), for the analysis of lipid, peptide, protein, glycan, and perfluorooctanesulfonic acid (PFOS) compounds. 3,4-MNI demonstrated the best performance among the NI matrices. This matrix resulted in reduced ion suppression and better detection sensitivity for complex mixtures, for example, egg lipids/milk proteins/PFOS in tap water, while 2,3,6-DMNI was the best matrix for blueberry tissue imaging. Several important aspects of this work are reported: (1) dual-polarity ion production with NI matrices and complex mixtures; (2) quantitative analysis of PFOS with a LOQ of 0.5 ppb in tap water and 0.05 ppb in MQ water (without solid phase extraction enrichment), with accuracy and precision within 5%; (3) MALDI imaging with 2,3,6-DMNI as a matrix for plant metabolite/lipid identification with ionization enhancement in the negative ion mode m/z 600-900 region; and (4) development of a thin film deposition under/above tissue method for MALDI imaging with a vacuum sublimation matrix on a high-vacuum MALDI instrument.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Indoles , Lípidos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/análisis , Mezclas Complejas , Agua
5.
Water Res ; 250: 121036, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134858

RESUMEN

Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Destilación
6.
ACS Omega ; 8(33): 30306-30314, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636953

RESUMEN

In this study, we reported the synthesis of 1-(4-bromobenzoyl)-1,3-dicyclohexylurea by the reaction of DCC (N,N'-dicyclohexylcarbodiimide) with 4-bromobenzoic acid. Subsequently, we further synthesized a new series of 1-(4-arylbenzoyl)-1,3-dicyclohexylurea (5a-g) derivatives using a Suzuki cross-coupling reaction between 1-(4-bromobenzoyl)-1,3-dicyclohexylurea (3) and various aryl/heteroaryl boronic acids (4). Thus, density functional theory (DFT) calculations have been performed to examine the electronic structure of the synthesized compounds (3, 5a-g) and to calculate their spectroscopic data. Moreover, optimized geometries and thermodynamic properties, such as frontier molecular orbitals (HOMO, LUMO), molecular electrostatic potential surfaces, and reactivity descriptors, were also calculated at the PBE0-D3BJ/def2-TZVP/SMD1,4-dioxane level of theory to validate the structures of the synthesized compounds.

7.
Sci Rep ; 13(1): 11376, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452082

RESUMEN

Hepatocellular carcinoma is the fifth most prevalent cancer worldwide. The emergence of drug resistance and other adverse effects in available anticancer options are challenging to explore natural sources. The current study was designed to decipher the Arnebia nobilis (A. nobilis) extracts for detecting phytochemicals, in-vitro evaluation of antioxidative and cytotoxic potentials, and in-silico prediction of potent anticancer compounds. The phytochemical analysis revealed the presence of flavonoids, phenols, tannins, alkaloids, quinones, and cardiac glycosides, in the ethanol (ANE) and n-hexane (ANH) extracts of A. nobilis. ANH extract exhibited a better antioxidant potential to scavenge DPPH, nitric oxide and superoxide anion radicals than ANE extract, which showed better potential only against H2O2 radicals. In 24 h treatment, ANH extract revealed higher cytotoxicity (IC50 value: 22.77 µg/mL) than ANH extract (IC50 value: 46.74 µg/mL) on cancer (HepG2) cells without intoxicating the normal (BHK) cells using MTT assay. A better apoptotic potential was observed in ANH extract (49.10%) compared to ANE extract (41.35%) on HepG2 cells using the annexin V/PI method. GCMS analysis of ANH extract identified 35 phytocompounds, from which only 14 bioactive compounds were selected for molecular docking based on druggability criteria and toxicity filters. Among the five top scorers, deoxyshikonin exhibited the best binding affinities of - 7.2, - 9.2, - 7.2 and - 9.2 kcal/mol against TNF-α, TGF-ßR1, Bcl-2 and iNOS, respectively, followed by ethyl cholate and 2-Methyl-6-(4-methylphenyl)hept-2-en-4-one along with their desirable ADMET properties. The phytochemicals of ANH extract could be used as a promising drug candidate for liver cancer after further validations.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Fitoquímicos/farmacología , Antioxidantes/química , Flavonoides/química
8.
Sci Total Environ ; 876: 162703, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906032

RESUMEN

Dissolved organic matter (DOM) in the sediment matrix affects contaminant remediation through consumption of oxidants and binding with contaminants. Yet the change in DOM during remediation processes, particularly during electrokinetic remediation (EKR), remains under-investigated. In this work, we elucidated the fate of sediment DOM in EKR using multiple spectroscopic tools under abiotic and biotic conditions. We found that EKR led to significant electromigration of the alkaline-extractable DOM (AEOM) toward the anode, followed by transformation of the aromatics and mineralization of the polysaccharides. The AEOM remaining in the cathode (largely polysaccharides) was resistant to reductive transformation. Limited difference was noted between abiotic and biotic conditions, indicating the dominance of electrochemical processes when relatively high voltages were applied (1-2 V/cm). The water-extractable organic matter (WEOM), in contrast, showed an increase at both electrodes, which was likely attributable to pH-driven dissociations of humic substances and amino acid-type constituents at the cathode and the anode, respectively. Nitrogen migrated with the AEOM toward the anode, but phosphorus remained immobilized. Understanding the redistribution and transformation of DOM could inform studies on contaminant degradation, carbon and nutrient availability, and sediment structural changes in EKR.

9.
Water Res ; 229: 119444, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470049

RESUMEN

A composite manganese-based catalytic ceramic membrane (Mn-CCM) was developed by a solid-state sintering method, and its effectiveness toward activation of peroxymonosulfate (PMS) for the degradation of 11 pharmaceutical and personal care products (PPCPs) mixture was tested. The optimized Mn-CCMs/PMS system showed remarkable degradation efficiencies for PPCPs mixture with total removal >90% in ultrapure water, river water and natural organic matter (NOM) solution. The Mn-CCMs/PMS system showed the contribution of different phenomena in PPCPs removal in the order of catalytic oxidation (54.7%, Mn-CCMs/PMS) > noncatalytic oxidation (42.3%, PMS oxidation) > adsorption (3.0%, by Mn-CCMs). The singlet oxygen (1O2) was the dominant reactive oxygen specie for the degradation of PPCPs in all water matrices proved by the quenching experiments and electro-paramagnetic resonance (EPR) spectroscopy. The extraordinary stability of Mn-CCMs for the activation of PMS has been noted in terms of repeatability experiments for PPCPs degradation with fewer leaching of Mn (1.9 to 3.6 µg/L). Mineralization was achieved in the range of 28-65% for different water matrices. The toxicity of the PPCPs mixture was reduced by 85.9%. The Mn-CCMs/PMS system showed a reduction (25-100%) in precursors of different carbon- and nitrogen-based disinfection by-products. This study found the Mn-CCMs/PMS system as a feasible purification unit for removing trace concentrations of PPCPs (ng/L) in real drinking water matrices.


Asunto(s)
Cosméticos , Agua Potable , Contaminantes Químicos del Agua , Peróxidos/química , Agua Potable/química , Oxígeno , Cosméticos/análisis , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
10.
Medicina (Kaunas) ; 58(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36363561

RESUMEN

Background and Objectives: The main objective of the present study was to determine the role of oxidative markers (glutathione (GSH), advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), and malondialdehyde (MDA)) and inflammatory biomarkers (interleukin-6 IL-6, tumor necrosis factor α (TNF-α), myeloperoxide (MPO)) in the development of diabetic nephropathy along with routinely used biochemical parameters. Materials and Method: This was a case control study. All the selected patients were screened and enrolled by convenient non-probability sampling technique at the Jinnah hospital in Lahore. Informed consent was obtained before enrollment of the study subjects. A total of 450 patients enrolled in the study, and they were divided into three groups, 150 subjects with type 2 diabetes and 150 diagnosed diabetic nephropathy (DN) vs. 150 healthy individuals as a control group. Five mL of venous blood sample was taken from the antecubital vein of each participant. Statistical analysis was performed by SPSS. The results of all variables were evaluated by using one way ANOVA. Results: The mean value of biochemical parameters (WBCs, platelets, prothrombin time, HbA1c, glucose, urinary albumin-to creatinine ratio (UACR), triglycerides, LDL, HDL, serum creatinine, urinary albumin (creatinine)) were increased and Hb (g/dL), red blood cells (RBCs), hematocrit (Hct), free serum insulin levels, and estimated glomerular filtration rate (eGFR) were decreased in the nephropathy group compared to the control and type 2 diabetes groups. The mean values of MDA, AGE, and AOPPs in type 2 diabetes and diabetic nephropathy were significantly increased compared to the control group. GSH level was decreased in type 2 diabetics and DN patients as compared to the control group. In addition, IL-6, TNFα, and MPO levels were also increased in case of diabetes nephropathy compared to controls. Conclusions: ROS mediated injuries can be prevented by the restoration of an antioxidant defense system, through the administration of antioxidant agents. Moreover, increased levels of inflammatory mediators are responsible for enhancing inflammation in patients with diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Antioxidantes/metabolismo , Creatinina , Estudios de Casos y Controles , Citocinas/metabolismo , Interleucina-6/metabolismo , Biomarcadores , Productos Avanzados de Oxidación de Proteínas , Glutatión , Albúminas , Estrés Oxidativo
11.
Biomed Res Int ; 2022: 1279961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193312

RESUMEN

Data regarding the therapeutic potential of Caladium lindenii (C. lindenii) are insufficient. It becomes more important to explore plants as an alternative or palliative therapeutics in deadly diseases around the globe. The current study was planned to explore C. lindenii for its anticancer activity of ethanolic and hexane extracts of C. lindenii leaves against hepatic carcinoma (HepG2) and human embryonic kidney (HEK293T) cell lines. HepG2 and HEK293T cells were treated with 10, 50, 100, 200, and 400 µg/mL of ethanolic and hexane extracts of C. lindenii and were incubated for 72 h. Antiproliferative activity was measured by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, and percentage viability were calculated through crystal violet staining and cellular morphology by Floid Cell Imaging Station. The study showed ethanolic extract exhibiting a significantly higher antiproliferative effect on HepG2 (IC50 = 31µg/mL) in a concentration-dependent manner, while HEK293T (IC50 = 241µg/mL) cells showed no toxicity. Hexane extract exhibited lower cytotoxicity (IC50 = 150µg/mL) on HepG2 cells with no effect on HEK293T (IC50 = 550µg/mL). On the other hand, the percentage viability of HepG2 cells was recorded as 78%, 67%, 50%, 37%, and 28% by ethanolic extracts, and 88%, 80%, 69%, 59%, and 50% by hexane extracts at tested concentrations of both extracts. Toxicity assay showed significantly safer ranges of percentage viabilities in normal cells (HEK293T), i.e., 95%, 90%, 88%, 76%, and 61% with ethanolic extract and 97%, 95%, 88%, 75%, and 62% with hexane extract. The assay validity revealed 100% viability in the control negative (dimethyl sulfoxide treated) and less than 45% in the control positive (cisplatin) on both HepG2 and HEK293T cells. Morphological studies showed alterations in HepG2 cells upon exposure to >50 µg/mL of ethanolic extracts and ≥400 µg/mL of hexane extracts. HEK293T on the other hand did not change its morphology against any of the extracts compared to the aggressive changes on the HepG2 cell line by both extracts and positive control (cisplatin). In conclusion, extracts of C. lindenii are proved to have significant potential for cytotoxicity-induced apoptosis in human cancer HepG2 cells and are less toxic to normal HEK293T cells. Hence C. lindenii extracts are proposed to be used against hepatocellular carcinoma (HCC) after further validations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Bromuros/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Cisplatino/uso terapéutico , Dimetilsulfóxido , Violeta de Genciana/uso terapéutico , Células HEK293 , Hexanos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Extractos Vegetales/química
12.
Membranes (Basel) ; 12(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36135885

RESUMEN

The excess sludge generated from the activated sludge process remains a big issue. Sustainable approaches that achieve in situ sludge reduction with satisfactory effluent quality deserve attention. This study explored the sludge reduction performance of sulfidogenic anoxic-oxic-anoxic (AOA) membrane bioreactors. The dynamics of the microbial community and metabolic pathways were further analyzed to elucidate the internal mechanism of sludge reduction. Compared with the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol), AOAS150 (150 mg/L SO42- in the membrane tank) and AOAS300 (300 mg/L SO42- in the membrane tank) reduced biomass production by 40.39% and 47.45%, respectively. The sulfide reduced from sulfate could enhance the sludge decay rate and decrease sludge production. Extracellular polymeric substances (EPSs) destruction and aerobic lysis contributed to sludge reduction in AOA bioreactors. The relative abundance of Bacteroidetes (phylum), sulfate-reducing bacteria (SRB, genus), and Ignavibacterium (genus) increased in AOA bioreactors compared with MBRcontrol. Our metagenomic analysis indicated that the total enzyme-encoding genes involved in glycolysis, denitrification, and sulfate-reduction processes decreased over time in AOAS300 and were lower in AOAS300 than AOAS150 at the final stage of operation. The excess accumulation of sulfide in AOAS300 may inactive the functional bacteria, and sulfide inhibition induced sludge reduction.

13.
Chemosphere ; 307(Pt 4): 136101, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998728

RESUMEN

A ceramic membrane reactor (CMR) integrated with in-situ UV/O3 was assessed for post-treatment of the effluent out of an up-flow anaerobic sludge blanket (UASB) reactor treating real textile wastewater, focusing on the transformation of dissolved organic matter (DOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) revealed the transformation of heteroatomic DOM containing S, N or both to simpler DOM containing mainly C, H, and O atoms. The decreased N contents in products (N/C = 0.0249) compared to precursors (N/C = 0.0311) and the higher O/C ratios in the N-containing products suggest the removal of R-NH2 groups accompanying DOM oxidation. While, S-containing compounds in the products had lower O/C and H/C ratios, suggesting a reduced state and the transformation of R-SO3 to R-S-R. H-abstraction and OH addition were identified as the primary oxidation mechanisms, thus enhancing the dominance of highly unsaturated and phenolic DOM in the effluent (70.3%) compared to the feed (56.6%). The double bond equivalent (DBE) was also increased by 26% in the effluent compared to the feed and by 33% in products compared to precursors. These findings help understand the DOM transformation in UV/O3-assisted ceramic membrane reactors and call for comprehensive toxicity analyses of effluents from the advanced oxidation processes.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Materia Orgánica Disuelta , Oxidación-Reducción , Textiles , Aguas Residuales/química
14.
Membranes (Basel) ; 12(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877863

RESUMEN

Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.

15.
Sci Total Environ ; 846: 157531, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35870579

RESUMEN

Applications of electrochemical advanced oxidation processes are rising in drinking water treatment for effective mitigation of refractory organic compounds. This study explored the fate of natural organic matter (NOM) (lake water and standard NOM (SRNOM solution)) at molecular-level in the reactive electrochemical membrane (REM) system utilizing Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Fluorescence spectroscopy showed above 90 % removal of the humic-like component in both lake water and SRNOM solution in 10 min of REM operation compared to 70-80 % removal of the fulvic-like component after 30 min. REM-based treatment effectively eliminated (>70 %) the disinfection byproduct precursors. The lake water, sharing ~70 % of similar compounds with SRNOM, displayed a different propensity toward electrochemical oxidation, and its finished water was characterized with relatively lower double-bond equivalent (DBE), nominal oxidation state of carbon (NOSC), and aromaticity compared to that of SRNOM. The chloride ions in the water matrix of lake water impacted the electrochemical oxidation and generated significantly different transformation products than SRNOM solution. The heteroatoms (N and S) containing compounds (CHON and CHOS) were preferentially degraded in lake water; however, CHOS compounds were removed fewer in SRNOM. The electrosorption and electrochemical oxidation on the REM surface were the significant contributors for NOM removal. The newly formed compounds were mostly retained on the REM surface and fewer were released in finished water. This study is believed to help understand the fate of NOM in real source drinking water during electrochemical treatment.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cerámica , Desinfección , Espectrometría de Masas , Purificación del Agua/métodos
16.
Sci Rep ; 12(1): 5840, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393506

RESUMEN

Herein, a biosorbent was prepared from cucumber peels modified with ZnO nanoparticles (CPZiONp-composite) for the biosorption of metribuzin. Characterization of the composite was accomplished using FTIR, SEM, EDX, surface area pore size analyzer and pH of point of zero charge (pHpzc). Biosorption study was executed in batch concerning the impact of pH, composite dose, contact time, initial metribuzin concentration and temperature. The biosorption depends on pH and maximum biosorption was acquired at pH 3.0. Surface chemistry of the composite was studied by determining the pHpzc and was found to be 6.1. The biosorption nature was investigated using isotherms and was assessed that Freundlich isotherm is well suited for the fitting of the biosorption data owing to the highest R2. The maximum biosorption capacity of CPZiONp-composite was found to be 200 mg g-1. The biosorption data were fitted in to different kinetic models and the outcomes suggesting that pseudo second order is a satisfactory model to interpret the biosorption data owing to the highest R2. Thermodynamic parameters for instance entropy, enthalpy and Gibbs free energy were computed and revealed that biosorption of metribuzin onto CPZiONp-composite is spontaneous and exothermic process.


Asunto(s)
Cucumis sativus , Nanopartículas , Plaguicidas , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Triazinas , Contaminantes Químicos del Agua/química
17.
Methods Mol Biol ; 2446: 37-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35157268

RESUMEN

Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.


Asunto(s)
Camélidos del Nuevo Mundo , Anticuerpos de Dominio Único , Animales , Técnicas de Visualización de Superficie Celular , ADN , Inmunización , Anticuerpos de Dominio Único/genética
18.
Water Res ; 210: 117979, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953213

RESUMEN

This research evaluated the performance of reactive electrochemical ceramic membrane (REM) in treating secondary effluent and investigated the fate of dissolved organic matter (DOM) at the molecular level. The role of adsorption, electrosorption, and oxidation in DOM removal was comprehensively elucidated based on fluorescence spectroscopy and high-resolution mass spectrometry (FT-ICR MS). Among the fluorescence components (C1-C3) in secondary effluent, microbial humic-like C2 showed fewer adsorption on the REM surface without applying an electrical potential. The electrosorption helped an enhanced uptake of all DOM components and transformed them onto the electrode surface. The fluorescence components and all three fractions (hydrophilic, transphilic, and hydrophobic) were rapidly degraded, and finished water with stable DOM was obtained. The leading degradation phenomena were the change of the unsaturated compounds to the aliphatic and transformation of large-sized molecules to medium and small-sized ones. Above 70% of the compounds in the secondary effluent acted as precursors, which were mineralized/degraded and transformed products were found on the REM surface and in the finished water. The compounds containing sulfur (CHOS) were easily and preferably degraded/mineralized, followed by the compounds containing nitrogen (CHON) and CHO. The oxidation of DOM led to the extensive formation of organo-chlorinated compounds, which contributed above 80% in products. Overall, the combination of fluorescence spectroscopy and FT-ICR MS provided unique behavior of DOM in the secondary effluent toward electro-oxidation in the REM system. These findings could help explore the potential of REM for different water matrices to project the possible composition of DOM in the finished water.


Asunto(s)
Materia Orgánica Disuelta , Agua , Cerámica , Espectrometría de Masas , Espectrometría de Fluorescencia
19.
Sci Total Environ ; 797: 149040, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34311376

RESUMEN

The increasing release of nutrients to aquatic environments has led to great concern regarding eutrophication and the risk of unwanted algal blooms. Based on observational data of 20 water quality parameters measured on a monthly basis at 40 stations from 2011 to 2020, this study applied different Machine Learning (ML) algorithms to suggest the best option for algal bloom prediction in the Han River, a large river in South Korea. Eight different ML algorithms were categorized into several groups of statistical learning, regression family, and deep learning, and were then compared for their suitability to predict the chlorophyll-derived trophic index (TSI-Chla). ML algorithms helped identify the most important water quality parameters contributing to algal bloom prediction. The ML results confirmed that eutrophication and algal proliferation were governed by the complex interplay between nutrients (nitrogen and phosphorus), organic contaminants, and environmental factors. Of the models tested, the adaptive neuro-fuzzy inference system (ANFIS) exhibited the best performance owing to its consistent and outperforming prediction both quantitatively (i.e., via regression) and qualitatively (i.e., via classification), which was evidenced by the lowest value of mean absolute error (MAE) of 0.09, and the highest F1-score, Recall and Precision of 0.97, 0.98 and 0.96, respectively. In a further step, a representative web application was constructed to assist common users to predict the trophic status of the Han River. This study demonstrated that ML techniques are not only promising for highly accurate water quality modeling of urban rivers, but also reduce time and labor intensity for experiments, which decreases the number of monitored water quality parameters, providing further insights into the driving factors of water quality deterioration. They ultimately help devise proactive strategies for sustainable water management.


Asunto(s)
Monitoreo del Ambiente , Ríos , China , Eutrofización , Aprendizaje Automático , Nitrógeno/análisis , Fósforo/análisis , República de Corea , Calidad del Agua
20.
Sci Total Environ ; 788: 147875, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34134356

RESUMEN

In this study, we used stable isotope-labeled soluble microbial products (SMP) and substrates to explore their assimilation into the formation of new biological products (i.e., extracellular polymeric substances and biomass) in two adjacent sequencing batch reactors. The isotope labeling approach along with fluorescence spectroscopy allowed us to distinguish between refractory and labile portions of SMP constituents as well as their roles in the formation of extracellular polymeric substances (EPS). Comparison of SMP fluorescence and the specific UV absorbance values between the two reactors revealed the presence of humic-like aromatic substances in the non-consumable part of SMP, which can be ultimately released as effluent organic matter. Parallel factor analysis modeling of fluorescence spectra showed that the hydrolysis of EPS contents mostly resulted in humic-like components in SMP rather than protein-like components, which were initially abundant in EPS (>80%). From variations in carbon and nitrogen isotopic contents in EPS and biomass, it was found that carbon-containing substrates were enriched faster than their nitrogenous counterparts. The contributions to new EPS formation reached 87.5% for carbon and 60.5% for nitrogen. Meanwhile, the isotopic tracking of the labeled SMP revealed that only 11.0% and 11.9% of carbon and 13.3% and 11.6% of nitrogen from the influent SMP were finally assimilated into EPS and biomass, respectively. In contrast, the isotopic enrichment in SMP was higher (~50%) than that of EPS and biomass, indicating the low bioavailability and refractory nature of the feed SMP. This study proposed a promising approach for estimating the relative contributions of different forms of labile substrate and SMP to the formation of EPS in activated sludge processes. This approach could be suggested as a versatile method for establishing the kinetics, substrate element flow, mass balance on organic substrates and nutrients, as well as for tracking the consumption and uptake pathways of hazardous materials.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Reactores Biológicos , Carbono , Isótopos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...