Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392308

RESUMEN

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Asunto(s)
Fabaceae , Animales , Fabaceae/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Insectos/genética
3.
Saudi J Biol Sci ; 27(7): 1811-1817, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32565700

RESUMEN

Red palm weevil (Rhynchophorus ferrugineus) is a voracious pest of date palm worldwide. Pakistan ranks sixth in date palm production globally. Losses to date palm plantations in Pakistan sometimes surpass 10%-20%. Most of the traditional management strategies used by farmers have been found insignificant to combat this voracious pest. The entomopathogenic fungi, Beauveria bassiana [QA-3(L) and QA-3(H)] and insecticides, Nitenpyram (Active 10% SL) [NIT (L) and NIT (H)] were applied to larval (2nd, 4th, and 6th), pupal and adult stages of R. ferrugienus. Integration or alone application of fungi with insecticides at different concentration under laboratory conditions. Combined application was depicted additive and synergistic interactions. Contrarily, highest cumulative mortality (100%) was recorded in 2nd instar larvae as compared to later instar larvae at combined application. The maximum pupal and adult mortality remained 89% and 66% respectively after treatment with [QA-3 (H) + NIT (L)]. The combination of B. bassiana at higher concentration whereas Nitenpyram at lower dose was found more lethal to larvae, pupae and adults of R. ferrugineus. This signifies the need of combining B. bassiana and bio-rational insecticides that can reduce the cost of management with least harm to environment and natural enemies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA