Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(23): 10726-10736, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38787891

RESUMEN

The ternary rare-earth sulfides RE2SnS5 (RE = La-Nd) and the partial solid solutions RE2Sn(S1-xSex)5 (RE = La, Ce; x = 0-0.8) were prepared in the form of polycrystalline samples by reaction of the elements at 900 °C and as single crystals in the presence of KBr flux. They adopt the La2SnS5-type structure (orthorhombic, space group Pbam, Z = 2) consisting of chains of edge-sharing SnCh6 octahedra separated by RE atoms. Although the cell parameters evolve smoothly in RE2Sn(S1-xSex)5, detailed structural analysis by single-crystal X-ray diffraction revealed a pronounced preference for the Se atoms to occupy two out of the three chalcogen sites, which offers a rationalization for why the all-selenide end-members RE2SnSe5 do not form. Solid-state 119Sn NMR spectra confirmed the nonrandom distribution of SnS6-nSen local environments, which could be resolved into individual resonances. The Raman spectra of RE2SnS5 compounds show an intense peak at 307-320 cm-1 assigned to a symmetric A1g mode, which is dominated by Sn-S bonds; the Raman peak intensities varied with Se substitution in La2Sn(S1-xSex)5. Optical diffuse reflectance spectra, band structure calculations, and electrochemical impedance spectra indicated that these compounds are narrow band gap semiconductors; the optical band gaps are insensitive to RE substitution in RE2SnS5 (0.7 eV) but they gradually decrease with greater Se substitution in RE2Sn(S1-xSex)5 (0.7-0.4 eV).

2.
Inorg Chem ; 63(13): 5972-5981, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502785

RESUMEN

Laves phases AB2 form the most abundant group of intermetallic compounds, consisting of combinations of larger electropositive metals A with smaller metals B. Many practical applications of Laves phases depend on the ability to tune their physical properties through appropriate substitution of either the A or B component. Although simple geometrical and electronic factors have long been thought to control the formation of Laves phases, no single factor alone can make predictions accurately. Several machine learning models have been developed to discover new Laves phases, including variations caused by solid solubility, using elemental properties solely on the basis of chemical composition. These models were trained on a data set comprising about 3700 entries of experimentally known phases AB2 with Laves and non-Laves structures. Among these models, a decision tree algorithm gave very good performance (average recall of 95%, precision of 94%, and accuracy of 96% on the test set) by using only a small set of descriptors, the most important of which relates to the electron density at the boundary of the Wigner-Seitz cell for the B component. This model provides guidance for new experiments by making predictions on >400000 candidates very quickly. A chemically unintuitive candidate Cd(Cu1-xSbx)2 with a limited solid solubility of Sb for Cu was targeted; it was successfully synthesized and confirmed to adopt a cubic MgCu2-type Laves structure.

3.
ACS Appl Mater Interfaces ; 15(33): 40070-40079, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37555778

RESUMEN

Sodium thioantimonate (Na3SbS4) and its W-substituted analogue Na2.88Sb0.88W0.12S4 have been identified as potential electrolyte materials for all-solid-state sodium batteries due to their high Na+ conductivity. Ball milling mechanochemistry is a frequently employed synthetic approach to produce such Na+-conductive solid solutions; however, changes in the structure and morphology introduced in these systems via the mechanochemistry process are poorly understood. Herein, we combined X-ray absorption fine structure spectroscopy, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy characterization techniques to provide an in-depth analysis of these solid electrolytes. We report unique changes seen in the structure and morphology of Na3SbS4 and Na2.88Sb0.88W0.12S4 resulting from ball milling, inducing changes in the electrochemical performance of the solid-state batteries. Specifically, we observed a tetragonal-to-cubic crystal phase transition within Na3SbS4 following the ball mill, resulting in an increase in Na+ conductivity. In contrast, the Na+ conductivity was reduced in mechanochemically treated Na2.88Sb0.88W0.12S4 due to the formation and accumulation of a WS2 phase. In addition, mechanochemical treatment alters the surface morphology of densified Na2.88Sb0.88W0.12S4 pellets, providing intimate contact at the solid electrolyte/Na interface. This phenomenon was not observed in Na3SbS4. This work reveals the structural and morphological origin of the changes seen in these materials' electrochemical performance and how mechanochemical synthesis can introduce them.

4.
Inorg Chem ; 62(28): 10865-10875, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37390482

RESUMEN

Machine-learning methods have exciting potential to aid materials discovery, but their wider adoption can be hindered by the opaqueness of many models. Even if these models are accurate, the inability to understand the basis for the predictions breeds skepticism. Thus, it is imperative to develop machine-learning models that are explainable and interpretable so that researchers can judge for themselves if the predictions are consistent with their own scientific understanding and chemical insight. In this spirit, the sure independence screening and sparsifying operator (SISSO) method was recently proposed as an effective way to identify the simplest combination of chemical descriptors needed to solve classification and regression problems in materials science. This approach uses domain overlap (DO) as the criterion to find the most informative descriptors in classification problems, but sometimes a low score can be assigned to useful descriptors when there are outliers or when samples belonging to a class are clustered in different regions of the feature space. Here, we present a hypothesis that the performance can be improved by implementing decision trees (DT) instead of DO as the scoring function to find the best descriptors. This modified approach was tested on three important structural classification problems in solid-state chemistry: perovskites, spinels, and rare-earth intermetallics. In all cases, the DT scoring gave better features and significantly improved accuracies of ≥0.91 for the training sets and ≥0.86 for the test sets.

5.
Inorg Chem ; 62(19): 7491-7502, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116178

RESUMEN

Complete substitution of Li atoms for Ag atoms in AgGaSe2 and AgInSe2 was achieved, resulting in the solid solutions LixAg1-xGaSe2 and LixAg1-xInSe2. The detailed crystal structures were determined by single-crystal X-ray diffraction and solid-state 7Li nuclear magnetic resonance spectroscopy, which confirm that Li atoms occupy unique sites and disorder only with Ag atoms. The tetragonal CuFeS2-type structure (space group I4̅2d) was retained within the entirety of the Ga-containing solid solution LixAg1-xGaSe2, which is noteworthy because the end-member LiGaSe2 normally adopts the orthorhombic ß-NaFeO2-type structure (space group Pna21). These structures are closely related, being superstructures of the cubic sphalerite and hexagonal wurtzite prototypes adopted by diamond-like semiconductors. For the In-containing solid solution LixAg1-xInSe2, the structure transforms from the tetragonal to orthorhombic forms as the Li content increases past x = 0.50. The optical band gaps increase gradually with higher Li content, from 1.8 to 3.4 eV in LixAg1-xGaSe2 and from 1.2 to 2.5 eV in LixAg1-xInSe2, enabling control to desired values, while the second harmonic generation responses become stronger or are similar to those of benchmark infrared nonlinear optical materials such as AgGaS2. All members of these solid solutions remain congruently melting at accessible temperatures between 800 and 900 °C. Electronic structure calculations support the linear trends seen in the optical band gaps and confirm the mostly ionic character present in Li-Se bonds, in contrast to the more covalent character in Ga-Se or In-Se bonds.

6.
Commun Chem ; 6(1): 75, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076629

RESUMEN

Aliovalent substitution of the B component in ABX3 metal halides has often been proposed to modify the band gap and thus the photovoltaic properties, but details about the resulting structure have remained largely unknown. Here, we examine these effects in Bi-substituted CsSnBr3. Powder X-ray diffraction (XRD) and solid-state 119Sn, 133Cs and 209Bi nuclear magnetic resonance (NMR) spectroscopy were carried out to infer how Bi substitution changes the structure of these compounds. The cubic perovskite structure is preserved upon Bi-substitution, but with disorder in the B site occurring at the atomic level. Bi atoms are randomly distributed as they substitute for Sn atoms with no evidence of Bi segregation. The absorption edge in the optical spectra shifts from 1.8 to 1.2 eV upon Bi-substitution, maintaining a direct band gap according to electronic structure calculations. It is shown that Bi-substitution improves resistance to degradation by inhibiting the oxidation of Sn.

7.
Acta Crystallogr C Struct Chem ; 78(Pt 10): 515-516, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196783
8.
Phys Chem Chem Phys ; 24(39): 24306-24316, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36172896

RESUMEN

Chalcogenides are an important class of materials that exhibit tailorable optoelectronic properties accessible through chemical modification. For example, the minerals kesterite, stannite, and velikite (Cu2MSnS4, where M = Zn, Cd, or Hg, respectively) are a series of Group 12 transition metal tin sulfides that readily exhibit optical bandgaps spanning the Shockley-Queisser limit; however, achieving consensus on their structure (space group I4̄ vs. I4̄2m) has been difficult. This study explores the average long-range and local structure of Cu2HgSnS4 and evaluates the parallels of M = Zn and Cd sister compounds using complementary X-ray diffraction and solid-state nuclear magnetic resonance (NMR) spectroscopy. The 63/65Cu NMR spectra were acquired at multiple magnetic field strengths (B0 = 7.05, 11.75, and 21.1 T) to assess the unique chemical shift anisotropy and quadrupolar coupling contributions. They reveal two inequivalent sets of Cu sites in Cu2ZnSnS4, in contrast to only one set of sites in Cu2CdSnS4 and Cu2HgSnS4, clarifying structural assignments previously proposed through X-ray diffraction methods. The presence of these Cu sites was further supported by DFT calculations. The 119Sn and 199Hg NMR spectra suggest that an ordering phenomenon takes place in Cu2HgSnS4 when it undergoes annealing treatments. The trend in measured optical band gaps (1.5 eV for Cu2ZnSnS4, 1.2 eV for Cu2CdSnS4, and 0.9 eV for Cu2HgSnS4) was confirmed by electronic structure calculations, which show that the band gap narrows as the difference in electronegativity is diminished and that Hg-S bonds in Cu2HgSnS4 have greater covalent character.

9.
Inorg Chem ; 61(31): 12458-12465, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35877612

RESUMEN

The oxyselenide La4Ga2Se6O3 was obtained by reaction in NaCl flux. Its monoclinic crystal structure (space group C2/c, a = 21.2832(13) Å, b = 11.6272(7) Å, c = 6.0006(4) Å, ß = 106.3430(10)°, Z = 4), which is a new type, consists of strips of edge-sharing OLa4 tetrahedra and zigzag chains of corner-sharing GaSe4 tetrahedra. The separation into distinct structural blocks with mostly ionic vs covalent bonding character was supported by analysis of the electron localization function and crystal orbital bond index. An experimental band gap of 1.8 eV was extracted from optical diffuse reflectance spectra. First-principles calculations suggest that the thermoelectric power factor of this compound would be enhanced by n-doping.

10.
Mater Horiz ; 8(1): 209-215, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821299

RESUMEN

Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl2Si2-type rare-earth phosphides RECuZnP2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s-1) such as RECuZnP2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m-1 K-1). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance (zT of 0.5 for ErCuZnP2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization.

11.
Inorg Chem ; 60(23): 17900-17910, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34802235

RESUMEN

The ternary rare-earth-metal nickel indides RE23Ni7In4 (RE = Gd, Tb, Dy) were prepared by arc-melting mixtures of the elements followed by annealing at 870 K. They adopt the Yb23Cu7Mg4-type structure (space group P63/mmc, Pearson symbol hP68, Z = 2), as determined by laboratory and synchrotron powder diffraction methods for RE = Gd (a = 9.6435(10) Å, c = 22.118(3) Å) and Tb (a = 9.5695(8) Å, c = 21.983(3) Å), and single-crystal X-ray diffraction methods for RE = Dy (a = 9.533(5) Å, c = 21.890(13) Å). The centrosymmetric Yb23Cu7Mg4-type structure is closely related to the noncentrosymmetric Pr23Ir7Mg4-type structure. Triangular In3 clusters within RE23Ni7In4 represent a rare type of cluster found among metal-rich indides; the reasons for their formation were investigated by density functional theory methods.

12.
Inorg Chem ; 59(15): 11089-11095, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32700899

RESUMEN

The quaternary rare-earth-metal hafnium copper arsenides REHfCu2+δAs3 (where RE = La-Nd; δ ≈ 0.17) were obtained by direct reactions of the elements at 1073 K. They adopt a noncentrosymmetric orthorhombic crystal structure (space group Pmn21; a = 397.73(3)-392.37(2) pm, b = 1062.68(8)-1055.23(6) pm, c = 1307.25(9)-1291.40(7) pm for RE = La-Nd), which can be considered to be a Cu-deficient superstructure of the ternary Zr2Ni3P3-type structure found among metal-rich pnictides with a metal-to-nonmetal ratio close or equal to 2:1. The RE atoms occupy trigonal prismatic (CN6) and monocapped trigonal prismatic (CN7) sites, the latter resulting from the occurrence of Cu vacancies, the Hf atoms occupy octahedral sites (CN6), and the Cu atoms occupy tetrahedral sites (CN4). Band structure calculations on idealized models LaHfCu2As3 and LaHfCu2.5As3 suggest that the bonding situation improves by fractional occupation of the Cu3 site via depopulation of antibonding Cu-As states.

13.
Chem Sci ; 12(9): 3253-3263, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34164094

RESUMEN

Tin halide perovskites are promising candidates for lead-free photovoltaic and optoelectronic materials, but not all of them have been well characterized. It is essential to determine how the bulk photophysical properties are correlated with their structures at both short and long ranges. Although CsSnCl3 is normally stable in the cubic perovskite structure only above 379 K, it was prepared as a metastable phase at room temperature. The transition from the cubic to the monoclinic phase, which is the stable form at room temperature, was tracked by solid-state 133Cs NMR spectroscopy and shown to take place through a first-order kinetics process. The complete solid solution CsSn(Cl1-x Br x )3 (0 ≤ x ≤ 1) was successfully prepared, exhibiting cubic perovskite structures extending between the metastable CsSnCl3 and stable CsSnBr3 end-members. The NMR spectra of CsSnBr3 samples obtained by three routes (high-temperature, mechanochemical, and solvent-assisted reactions) show distinct chemical shift ranges, spin-lattice relaxation parameters and peak widths, indicative of differences in local structure, defects and degree of crystallinity within these samples. Variable-temperature 119Sn spin-lattice relaxation measurements reveal spontaneous mobility of Br atoms in CsSnBr3. The degradation of CsSnBr3, exposed to an ambient atmosphere for nearly a year, was monitored by NMR spectroscopy and powder X-ray diffraction, as well as by optical absorption spectroscopy.

14.
ACS Appl Mater Interfaces ; 11(36): 32739-32745, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31414791

RESUMEN

An innovative application of metal-organic frameworks (MOFs) is in biomedical materials. To treat bone demineralization, which is a hallmark of osteoporosis, biocompatible MOFs (bioMOFs) have been proposed in which various components, such as alkaline-earth cations and bisphosphonate molecules, can be delivered to maintain normal bone density. Multicomponent bioMOFs that release several components simultaneously at a controlled rate thus offer an attractive solution. We report two new bioMOFs, comprising strontium and calcium ions linked by p-xylylenebisphosphonate molecules that release these three components and display no cytotoxic effects on human osteosarcoma cells. Varying the Sr2+/Ca2+ ratio in these bioMOFs causes the rate of ions dissolving into simulated body fluid to be unique; along with the ability to adsorb proteins, this property is crucial for future efforts in drug-release control and promotion of mineral formation. The one-pot synthesis of these bioMOFs demonstrates the utility of MOF design strategies.


Asunto(s)
Biomineralización , Calcio/química , Estructuras Metalorgánicas/química , Estroncio/química , Línea Celular Tumoral , Difosfonatos/química , Humanos , Iones , Espectroscopía de Resonancia Magnética , Albúmina Sérica Bovina/química , Difracción de Rayos X
15.
Inorg Chem ; 58(15): 10390-10398, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31342744

RESUMEN

Four Hg-based IR nonlinear-optical materials, AHgSnQ4 (A = Sr, Ba; Q = S, Se), were discovered and investigated systematically. Their structures are built of two-dimensional [HgSnQ4]2- layers, which are assembled alternately by distorted (HgQ4 and SnQ4) tetrahedra and separated by eight-coordinated A2+ cations. The two sulfides AHgSnS4 (A = Ba, Sr) exhibit large second-harmonic-generation (SHG) responses (2.8 and 1.9 × AgGaS2 at 2.09 µm), as well as large band gaps (2.77 and 2.72 eV). The two selenides AHgSnSe4 (A = Ba, Sr) show even stronger SHG responses, about 5 times that of AgGaS2. Furthermore, all four compounds show phase-matching behavior, and the results of first-principles calculation elucidate the key role of the HgQ4 group in the enhanced SHG effect in ß-BaHgSnS4 and BaHgSnSe4.

16.
Inorg Chem ; 58(14): 9280-9289, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247819

RESUMEN

The site preferences within the structures of half-Heusler compounds have been evaluated through a machine-learning approach. A support-vector machine algorithm was applied to develop a model which was trained on 179 experimentally reported structures and 23 descriptors based solely on the chemical composition. The model gave excellent performance, with sensitivity of 93%, selectivity of 96%, and accuracy of 95%. As an illustration of data sanitization, two compounds (GdPtSb, HoPdBi) flagged by the model to have potentially incorrect site assignments were resynthesized and structurally characterized. The predictions of the correct site assignments from the machine-learning model were confirmed by single-crystal and powder X-ray diffraction analysis. These site assignments also corresponded to the lowest total energy configurations as revealed from first-principles calculations.

17.
Inorg Chem ; 57(22): 14249-14259, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30365327

RESUMEN

A total of 73 new quaternary rare-earth germanides RE4 M2 XGe4 ( RE = rare-earth metal; M = Mn-Ni; X = Ag, Cd) were prepared through reactions of the elements. The solid solution Nd4Mn2Cd(Ge1- ySi y)4 was also prepared under the same conditions and found to be complete over the entire range. All of these compounds adopt the monoclinic Ho4Ni2InGe4-type structure (space group C2/ m, a = 14.2-16.7 Å, b = 4.0-4.6 Å, c = 6.8-7.5 Å, ß = 106-109°), as revealed by powder X-ray diffraction analysis and single-crystal X-ray diffraction analysis on selected members. The structure determination of Nd4(Mn0.78(1)Ag0.22(1))2Ag0.83(1)Ge4 disclosed disorder of Mn and Ag atoms within the tetrahedral site and Ag deficiencies within the square planar site. Within the solid solution Nd4Mn2Cd(Ge1- ySi y)4, the end-members and two intermediate members were structurally characterized; as the Si content increases, the Cd sites become less deficient and the individual [Mn2 Tt2] layers contract but become further apart from each other. Electronic band structure calculations confirm that the Ag-Ge or Cd-Ge bonds are the weakest in the structure and thus prone to distortion. Thermal property measurements confirm expectations from machine-learning predictions that these quaternary germanides should exhibit low thermal conductivity, which was found to be <10 W m-1 K-1 for Nd4Mn2AgGe4.

18.
ACS Nano ; 12(8): 7434-7444, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30027732

RESUMEN

Most discoveries in materials science have been made empirically, typically through one-variable-at-a-time (Edisonian) experimentation. The characteristics of materials-based systems are, however, neither simple nor uncorrelated. In a device such as an organic photovoltaic, for example, the level of complexity is high due to the sheer number of components and processing conditions, and thus, changing one variable can have multiple unforeseen effects due to their interconnectivity. Design of Experiments (DoE) is ideally suited for such multivariable analyses: by planning one's experiments as per the principles of DoE, one can test and optimize several variables simultaneously, thus accelerating the process of discovery and optimization while saving time and precious laboratory resources. When combined with machine learning, the consideration of one's data in this manner provides a different perspective for optimization and discovery, akin to climbing out of a narrow valley of serial (one-variable-at-a-time) experimentation, to a mountain ridge with a 360° view in all directions.

19.
J Biomed Nanotechnol ; 14(9): 1654-1664, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29958559

RESUMEN

The efficient cell transfection method is vital for various biomedical applications, such as the CRISPR-Cas9 technique. Current cell transfection methods, including lipofectamine, calcium phosphate co-precipitation, nucleofection, and viral infection are not equally efficient for various cells and have their disadvantages. In this study, a magnetic nanoparticle (MNP)-based method was introduced for delivering both FITC dye and a functional EGFP gene into easy-to-transfect HEK cells and difficult-to-transfect rat primary cortical neurons. The transfection efficacy could be controlled in both time-dependent and magnetic strength-dependent manner. This cell transfection method could have substantial potential for targeted drug delivery.


Asunto(s)
Nanopartículas de Magnetita , Animales , Neuronas , Ratas , Transfección
20.
Inorg Chem ; 57(13): 7966-7974, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29926728

RESUMEN

There remain 21 systems (out of over 3500 possible combinations of the elements) in which the existence of the simple binary equiatomic phases AB has not been established experimentally. Among these, the presumed binary phase HfIn is predicted to adopt the tetragonal CuAu-type structure (space group P4/ mmm) by a recently developed machine-learning model and by structure optimization through global energy minimization. To test this prediction, the Hf-In system was investigated experimentally by reacting the elements in a 1:1 stoichiometry at 1070 K. Under the conditions investigated, the bulk and surface of the sample correspond to different crystalline phases but have nearly the same equiatomic composition, as revealed by energy-dispersive X-ray analysis. The structure of the bulk sample, which was solved from powder X-ray diffraction data through simulated annealing, corresponds to the γ-brass (Cu5Zn8) type (space group I4̅3 m) with Hf and In atoms disordered over four sites. The structure of crystals selected from the surface, which was solved using single-crystal X-ray diffraction data, corresponds to the CuPt7 type (space group Fm3̅ m) with Hf and In atoms partially disordered over three sites. The discrepancy between the predicted CuAu-type structure and the two experimentally refined crystal structures is reconciled through close inspection of structural relationships, which reveal that the γ-brass-type structure of the bulk HfIn phase is indeed derived through small distortions and defect formation within the CuAu-type structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...