Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cells ; 12(19)2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37830621

RESUMEN

Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and ß-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Furina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Furina/metabolismo , Proproteína Convertasas/metabolismo , Procesamiento Proteico-Postraduccional , Serina-Treonina Quinasas TOR/metabolismo
2.
Viruses ; 15(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37766313

RESUMEN

Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.

3.
Interdiscip Sci ; 15(3): 452-464, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37389721

RESUMEN

Diabetes mellitus significantly contributes to breast cancer progression, where hyperglycemia upregulates specific genes, leading to more aggressive tumor growth. In patients with BC that develop diabetes, neuregulin 1 (NRG1) and epidermal growth factor receptor 3 (ERBB3) overexpression exacerbate tumor growth and progression. Since the interaction between NRG1 and ERBB3 is critical for tumor growth, understanding the molecular mechanisms underlying NRG1-ERBB3 complex formation is essential for elucidating diabetes-assisted breast cancer progression. However, the key residues forming the NRG1-ERBB3 complex remain unknown. Here, we substituted specific residues in NRG1 with alanine and studied its interactions with ERBB3 using computational structural biology tools. We further screened the South African natural compounds database to target the complex's interface residues to discover potential inhibitors. The conformational stability and dynamic features of NRG1-WT, -H2A, -L3A, and -K35A complexed with ERBB3 were subjected to 400 ns molecular dynamics simulations. The free binding energies of all NRG1-ERBB3 complexes were calculated using the molecular mechanics-generalized Born surface area (MM/GBSA). The H2 and L3 alanine substitutions caused a loss of interaction with ERBB3 residue D73, weakening the interaction with ERBB3. Screening 1300 natural compounds identified four (SANC00643, SANC00824, SANC00975, and SANC00335) with the best potential to inhibit ERRB3-NRG1 coupling. The binding free energies for each complex were - 48.55 kcal/mol for SANC00643, - 47.68 kcal/mol for SANC00824, - 46.04 kcal/mol for SANC00975, and - 45.29 kcal/mol for SANC00335, showing their overall stronger binding with ERBB3 than NRG1 and their potential to act as ERBB3-NRG1 complex inhibitors. In conclusion, this complex may represent a residue-specific drug target to inhibit BC progression.


Asunto(s)
Neoplasias de la Mama , Diabetes Mellitus , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neurregulina-1/genética , Neurregulina-1/metabolismo , Neurregulina-1/farmacología , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
4.
J Ethnopharmacol ; 302(Pt B): 115937, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36410575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse ß-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY: To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from ß-cells were examined. METHODS: The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS: Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCß (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS: Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.


Asunto(s)
Commiphora , Neoplasias Pancreáticas , Humanos , Ratas , Animales , Ratones , Secreción de Insulina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ácido Egtácico , Nifedipino , Proteína Quinasa C , Proteínas Quinasas Dependientes de AMP Cíclico , Insulina , Quinasas MAP Reguladas por Señal Extracelular , Acetato de Tetradecanoilforbol , Fosfatidilinositol 3-Quinasas
5.
Microb Pathog ; 170: 105701, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35963279

RESUMEN

Neuropilin-1 (NRP1) is a widely expressed cell surface receptor protein characterized by its pleiotropic function. Recent reports highlighted NRP1 as an additional entry point of the SARS-CoV-2 virus, enhancing viral infectivity by interacting with the S-protein of SARS-CoV-2. The ubiquitous distribution and mechanism of action of NRP1 enable the SARS-CoV-2 virus to attack multiple organs in the body simultaneously. Therefore, blocking NRP1 is a potential therapeutic approach against SARS-CoV-2 infection. The current study screened the South African natural compounds database (SANCDB) for molecules that can disrupt the SARS-CoV-2 S protein-NRP1 interaction as a potential antiviral target for SARS-CoV-2 cellular entry. Following excessive screening and validation analysis 3-O-Methylquercetin and Esculetin were identified as potential compounds to disrupt the S-protein-NRP1 interaction. Furthermore, to understand the conformational stability and dynamic features between NRP1 interaction with the selected natural products, we performed 200 ns molecular dynamics (MD) simulations. In addition, molecular mechanics-generalized Born surface area (MM/GBSA) was utilized to calculate the free binding energies of the natural products interacting with NRP1. 3-O-methylquercetin showed an inhibitory effect with binding energies ΔG of -25.52 ±â€¯0.04 kcal/mol to NRP1, indicating the possible disruption of the NRP1-S-protein interaction. Our analysis demonstrated that 3-O-methylquercetin presents a potential antiviral compound against SARS-CoV-2 infectivity. These results set the path for future functional in-vitro and in-vivo studies in SARS-CoV-2 research.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Neuropilina-1/metabolismo , Antivirales/química , Antivirales/farmacología , Productos Biológicos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuropilina-1/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
Microorganisms ; 9(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34835456

RESUMEN

Glucose-regulated protein 78 (GRP78) might be a receptor for SARS-CoV-2 to bind and enter the host cell. Recently reported mutations in the spike glycoprotein unique to the receptor-binding domain (RBD) of different variants might increase the binding and pathogenesis. However, it is still not known how these mutations affect the binding of RBD to GRP78. The current study provides a structural basis for the binding of GRP78 to the different variants, i.e., B.1.1.7, B.1.351, B.1.617, and P.1 (spike RBD), of SARS-CoV-2 using a biomolecular simulation approach. Docking results showed that the new variants bound stronger than the wild-type, which was further confirmed through the free energy calculation results. All-atom simulation confirmed structural stability, which was consistent with previous results by following the global stability trend. We concluded that the increased binding affinity of the B.1.1.7, B.1.351, and P.1 variants was due to a variation in the bonding network that helped the virus induce a higher infectivity and disease severity. Consequently, we reported that the aforementioned new variants use GRP78 as an alternate receptor to enhance their seriousness.

7.
Biomolecules ; 11(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919870

RESUMEN

The SARS-CoV-2 non-structural protein (nsp) nsp10-nsp16 complex is essential for the 2'-O-methylation of viral mRNA, a crucial step for evading the innate immune system, and it is an essential process in SARS-CoV-2 life cycle. Therefore, detecting molecules that can disrupt the nsp10-nsp16 interaction are prospective antiviral drugs. In this study, we screened the North African Natural Products database (NANPDB) for molecules that can interact with the nsp10 interface and disturb the nsp10-nsp16 complex formation. Following rigorous screening and validation steps, in addition to toxic side effects, drug interactions and a risk /benefit assessment, we identified four compounds (genkwanin-6-C-beta-glucopyranoside, paraliane diterpene, 4,5-di-p-trans-coumaroylquinic acid and citrinamide A) that showed the best binding affinity and most favourable interaction with nsp10 interface residues. To understand the conformational stability and dynamic features of nsp10 bound to the four selected compounds, we subjected each complex to 200 ns molecular dynamics simulations. We then calculated the free binding energies of compounds interacting with nsp10 structure using the molecular mechanics-generalised Born surface area (MMGBSA). Of the four compounds, genkwanin-6-C-beta-glucopyranoside demonstrated the most stable complex with nsp10, in addition to a tighter binding affinity of -37.4 ± 1.3 Kcal/mol. This potential to disrupt the nsp10-nsp16 interface interaction and inhibit it now sets the path for functional studies.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antivirales/química , Productos Biológicos/química , Descubrimiento de Drogas , Humanos , Metiltransferasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores
8.
Int J Infect Dis ; 103: 611-616, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33075532

RESUMEN

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614G substitution in the severe acute respiratory syndome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S protein), which may affect viral infectivity. METHODS: The effect of D614G substitution on the structure and thermodynamic stability of the S protein was analyzed with use of DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease binding to the S protein RRAR cleavage site and calculate binding affinities. Molecular dynamics simulations were used to predict the S protein apo structure, the S protein-furin complex structure, and the free binding energy of the complex. RESULTS: The D614G substitution in the G clade of SARS-CoV-2 strains introduced structural mobility and decreased the thermal stability of the S protein (ΔΔG = -0.086 kcal mol-1). The substitution resulted in stronger binding affinity (Kd = 1.6 × 10-8) for furin, which may enhance S protein cleavage. The results were corroborated by molecular dynamics simulations demonstrating higher binding energy of furin and the S protein D614G mutant (-61.9 kcal mol-1 compared with -56.78 kcal mol-1 for wild-type S protein). CONCLUSIONS: The D614G substitution in the G clade induced flexibility of the S protein, resulting in increased furin binding, which may enhance S protein cleavage and infiltration of host cells. Therefore, the SARS-CoV-2 D614G substitution may result in a more virulent strain.


Asunto(s)
COVID-19/etiología , Furina/metabolismo , Proteínas Mutantes/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Termodinámica
9.
Infect Genet Evol ; 87: 104639, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246086

RESUMEN

OBJECTIVES: To investigate the role of ethnicity in COVID-19 outcome disparities in a cohort in Kuwait. METHODS: This is a retrospective analysis of 405 individuals infected with SARS-CoV-2 in Kuwait. Outcomes such as symptoms severity and mortality were considered. Multivariate logistic regression models were used to report the odds ratios (OR) for ICU admission and dying from COVID-19. RESULTS: The cohort included 290 Arabs and 115 South Asians. South Asians recorded significantly higher COVID-19 death rates compared to Arabs (33% vs. 7.6%, P value<0.001). When compared to Arabs, South Asians also had higher odds of being admitted to the ICU (OR = 6.28, 95% CI: 3.34-11.80, p < 0.001). South Asian patients showed 7.62 (95% CI: 3.62-16.02, p < 0.001) times the odds of dying from COVID-19. CONCLUSION: COVID-19 patients with South Asians ethnicity in Kuwait are more likely to have worse prognosis and outcome when compared to patients with Arab ethnicity. This suggest a possible role for ethnicity in COVID-19 outcome disparities and this role is likely to be multifactorial.


Asunto(s)
COVID-19/etnología , Adulto , Anciano , COVID-19/epidemiología , COVID-19/virología , Etnicidad , Femenino , Humanos , Kuwait/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
10.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899389

RESUMEN

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.


Asunto(s)
Efrina-A2/metabolismo , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Piel/metabolismo , Gelatina de Wharton/metabolismo , Biomarcadores , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Humanos , Células Madre Mesenquimatosas/citología , Receptor EphA2 , Piel/citología , Gelatina de Wharton/citología
11.
Life Sci ; 259: 118219, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32768580

RESUMEN

AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member of the betacoronaviruses family affecting the lower respiratory tract mainly through binding to angiotensin converting enzyme 2 (ACE2) via its S-protein. Genetic analysis of (ACE2) gene revealed several variants that have been suggested to regulate the interaction with S protein. This study investigates the N720D variant, positioned in the collectrin-like domain (CLD) at proximity to type II transmembrane serine protease (TMPRSS2) cleavage site. MAIN METHODS: The effect of N720D variant on ACE2 structure and thermodynamic stability was studied by DynaMut. HDOCK was utilised to model TMPRSS2 protease binding to ACE2 WT and D720 variant cleavage site. PRODIGY was used to calculate binding affinities and MD simulation tools calculated the at 100 ns for ACE2 apo structure and the ACE2-TMPRSS2 complex. KEY FINDINGS: The N720D variant is a more dynamic structure with a free energy change (ΔΔG): -0.470 kcal/mol. As such, introducing a tighter binding affinity of Kd = 3.2 × 10-10 M between TMPRSS2 and N720D variant. RMSD, RMSF calculations showed the N720D variant is less stable, however, RMSF values of the D720-TMPRSS2 complex reflected a slower dynamic motion. SIGNIFICANCE: The hotspot N720D variant in the CLD of ACE2 affected the stability and flexibility of ACE2 by increasing the level of motion in the loop region, resulting in a more favourable site for TMPRSS2 binding and cleavage. Consequently, this would facilitate S-protein binding and can potentially increase viral entry highlighting the importance of variants affecting the ACE2-TMPRSS2 complex.


Asunto(s)
Betacoronavirus/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Serina Endopeptidasas/metabolismo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Humanos , Pulmón/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Neumonía Viral/enzimología , Neumonía Viral/genética , Neumonía Viral/virología , Polimorfismo de Nucleótido Simple , Unión Proteica , SARS-CoV-2 , Termodinámica
12.
Biol Res ; 52(1): 44, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426858

RESUMEN

BACKGROUND: Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic ß-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of ß-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of ß-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic ß-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1ß), were selected as candidates to be analyzed under lipotoxic conditions. RESULTS: We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1ß and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1ß mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. CONCLUSIONS: In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR-Akt and IRS-1 signaling in ß-cells under lipotoxic conditions.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Palmítico/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Línea Celular , Células Secretoras de Insulina/metabolismo , Ratas , Transducción de Señal
13.
Biol. Res ; 52: 44, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1019508

RESUMEN

BACKGROUND: Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic ß-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of ß-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of ß-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic ß-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1ß), were selected as candidates to be analyzed under lipotoxic conditions. RESULTS: We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1ß and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1ß; mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. CONCLUSIONS: In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR-Akt and IRS-1 signaling in ß-cells under lipotoxic conditions.


Asunto(s)
Animales , Ratas , Ácido Palmítico/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Línea Celular , Apoptosis , Células Secretoras de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...