Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 320(5879): 1063-7, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18497295

RESUMEN

Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.


Asunto(s)
Marte , Dióxido de Silicio , Agua , Medio Ambiente Extraterrestre , Calor , Concentración de Iones de Hidrógeno , Nave Espacial
2.
FEMS Microbiol Ecol ; 52(3): 377-95, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16329922

RESUMEN

The creation of a mathematical simulation model of photosynthetic microbial mats is important to our understanding of key biogeochemical cycles that may have altered the atmospheres and lithospheres of early Earth. A model is presented here as a tool to integrate empirical results from research on hypersaline mats from Baja California Sur (BCS), Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. The first version of our model, presented here, calculates fluxes and cycling of O(2), sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via four major microbial guilds: cyanobacteria (CYA), sulfate reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized Monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in BCS (Mexico). Model O(2), sulfide, and DIC concentration profiles and fluxes compared well with data collected in the field mats. There were some model-predicted features of biogeochemical cycling not observed in our actual measurements. For instance, large influxes and effluxes of DIC across the MBGC mat boundary may reveal previously unrecognized, but real, in situ limits on rates of biogeochemical processes. Some of the short-term variation in field-collected mat O(2) was not predicted by MBGC. This suggests a need both for more model sensitivity to small environmental fluctuations for the incorporation of a photorespiration function into the model.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Modelos Biológicos , Fotosíntesis , Cloruro de Sodio , Carbono/metabolismo , Chromatiaceae/crecimiento & desarrollo , Chromatiaceae/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Oscuridad , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Compuestos Inorgánicos/metabolismo , Luz , Oxígeno/metabolismo , Sulfuros/metabolismo , Bacterias Reductoras del Azufre/crecimiento & desarrollo , Bacterias Reductoras del Azufre/metabolismo
3.
Science ; 306(5702): 1698-703, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15576602

RESUMEN

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Asunto(s)
Marte , Atmósfera , Evolución Planetaria , Medio Ambiente Extraterrestre , Compuestos Férricos , Sedimentos Geológicos , Minerales , Silicatos , Nave Espacial , Agua , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...