Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241614

RESUMEN

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Ratones , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monoglicéridos , Ligandos
2.
J Med Chem ; 66(10): 6994-7015, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192374

RESUMEN

We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..


Asunto(s)
Simulación de Dinámica Molecular , Tiofenos , Ratas , Animales , Humanos , Tiofenos/farmacología , Tiofenos/química , Estrés Oxidativo , Amidas , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Canales Catiónicos TRPV/agonistas
3.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36362364

RESUMEN

α-Lipoic acid is a sulfur-containing nutrient endowed with pleiotropic actions and a safe biological profile selected to replace the unsaturated alkyl acid of capsaicin with the aim of obtaining lipoic amides potentially active as a TRPV1 ligand and with significant antioxidant properties. Thus, nine compounds were obtained in good yields following a simple synthetic procedure and tested for their functional TRPV1 activity and radical-scavenger activity. The safe biological profile together with the protective effect against hypoxia damage as well as the in vitro antioxidant properties were also evaluated. Although less potent than capsaicin, almost all lipoic amides were found to be TRPV1 agonists and, specifically, compound 4, the lipoic analogue of capsaicin, proved to be the best ligand in terms of efficacy and potency. EPR experiments and in vitro biological assays suggested the potential protective role against oxidative stress of the tested compounds and their safe biological profile. Compounds 4, 5 and 9 significantly ameliorated the mitochondrial membrane potential caused by hypoxia condition and decreased F2-isoprostanes, known markers of oxidative stress. Thus, the experimental results encourage further investigation of the therapeutic potential of these lipoic amides.


Asunto(s)
Capsaicina , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Antioxidantes/farmacología , Amidas/farmacología , Ligandos , Estrés Oxidativo , Hipoxia
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955562

RESUMEN

Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory-a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent ß-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.


Asunto(s)
Endocannabinoides , Monoacilglicerol Lipasas , Animales , Endocannabinoides/farmacología , Hiperalgesia/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Ratones , Enfermedades Neuroinflamatorias , Médula Espinal
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012721

RESUMEN

Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that stabilizes client proteins in a folded and functional state. It is composed of two identical and symmetrical subunits and each monomer consists of three domains, the N-terminal (NTD), the middle (MD), and the C-terminal domain (CTD). Since the chaperone activity requires ATP hydrolysis, molecules able to occupy the ATP-binding pocket in the NTD act as Hsp90 inhibitors, leading to client protein degradation and cell death. Therefore, human Hsp90 represents a validated target for developing new anticancer drugs. Since protozoan parasites use their Hsp90 to trigger important transitions between different stages of their life cycle, this protein also represents a profitable target in anti-parasite drug discovery. Nevertheless, the development of molecules able to selectively target the ATP-binding site of protozoan Hsp90 is challenging due to the high homology with the human Hsp90 NTD (hHsp90-NTD). In a previous work, a series of potent Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold was developed. The most promising inhibitor of the series, JMC31, showed potent Hsp90 binding and antiproliferative activity in NCI-H460 cells in the low-nanomolar range. In this work, we present the structural characterization of hHsp90-NTD in complex with JMC31 through X-ray crystallography. In addition, to elucidate the role of residue 112 on the ligand binding and its exploitability for the development of selective inhibitors, we investigated the crystal structures of hHsp90-NTD variants (K112R and K112A) in complex with JMC31.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Triazoles , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Triazoles/farmacología
6.
ACS Med Chem Lett ; 13(8): 1329-1336, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978701

RESUMEN

A virtual screening approach based on a five-feature pharmacophoric model for negative modulators of GLI1 was applied to databases of commercially available compounds. The resulting quinoline derivatives showed significant ability to reduce the GLI1 protein level and were characterized by submicromolar antiproliferative activity toward human melanoma A375 and medulloblastoma DAOY cell lines. Decoration of the quinoline ring and chemical rigidification to an oxazino-quinoline scaffold allowed us to deduce SAR considerations for future ligand optimization.

7.
RSC Med Chem ; 13(7): 873-883, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923722

RESUMEN

Neurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation. To this aim, we designed and synthesized a small library of cinnamic acid-inspired isomeric compounds with light modulated activity able to inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B), with remarkable selectivity over butyrylcholinesterase (BChE) and MAO-A, which have been investigated as the enzyme targets related to Alzheimer's disease (AD). The inhibitory activities were evaluated for the pure E-diastereomers and the E/Z-diastereomer mixtures, obtained upon UV irradiation. Molecular docking studies were carried out to rationalize the differences in the inhibition potency of the E and Z diastereomers of the best performing analogue 1c. Our preliminary findings may open-up the way for developing innovative multitarget photo-switch drugs against neurodegenerative diseases.

8.
Eur J Med Chem ; 241: 114615, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35932568

RESUMEN

The design of compounds able to combine the selective inhibition of cyclooxygenase-2 (COX-2) with the release of nitric oxide (NO) is a promising strategy to achieve potent anti-inflammatory agents endowed with an overall safer profile and reduced toxicity upon gastrointestinal and cardiovascular systems. With the aim of generating novel and selective COX-2 inhibiting NO-donors (CINOD) and encouraged by the promising results obtained with our nitrooxy- and hydroxyethyl ethers 11 and 12 reported in previous works, we shifted our attention on the synthesis of isosteric thioanalogs nitrooxy- and hydroxy ethyl sulfides 13a-c and 14a-c, respectively, along with their oxidation products nitrooxy- and hydroxyethyl sulfoxides 15a-c and 16a-c, respectively, also referred to as thio-CINOD. Preliminary data and metabolic analysis highlighted how the isosteric substitution of the ethereal oxygen atom of 11a-c with sulfur in compounds 13a-c, independently from the presence and the number of fluorine atoms in N1-phenyl ring, leads to new selective and highly potent COX-2 inhibitors, capable to induce vasorelaxant responses in vivo. The same behavior is observed with their oxidized counterparts nitrooxyethyl sulfoxides 15a-c, in which the oxidation state of the sulfur atom and the presence of the additional oxygen atom play a substantial role in enhancing compounds activity and vasorelaxation. In addition, the screened compounds proved significantly efficacious in mouse models of inflammation and nociception at the dose of 20 mg/kg.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Donantes de Óxido Nítrico , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Éteres , Ratones , Donantes de Óxido Nítrico/farmacología , Oxígeno , Pirroles/farmacología , Sulfuros , Sulfóxidos , Azufre , Vasodilatadores
9.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897934

RESUMEN

A general method for the synthesis of pyrrolizidine derivatives using an intramolecular hydroaminomethylation protocol (HAM) under microwave (MW) dielectric heating is reported. Starting from a 3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-vinylpyrrolidine, MW-assisted intramolecular HAM in the presence of gaseous H2 and CO gave the natural alkaloid hyacinthacine A2 protected as benzyl ether. The same approach gave a lentiginosine analogue starting from the corresponding vinyl N-hydroxypyrrolidine. The nature of the reaction products and the yields were strongly influenced by the relative stereochemistry of the starting pyrrolidines, as well as by the catalyst/ligand employed. The use of ethanol as a solvent provides environmentally friendly conditions, while the ligand/catalyst system can be recovered by separating the alkaloid product with an SCX column and recycling the ethanolic solution. HAM worked up to three times with the recycled catalyst solution without any significant impact on yield.


Asunto(s)
Alcaloides , Alcaloides de Pirrolicidina , Alcaloides/química , Calefacción , Ligandos , Microondas , Alcaloides de Pirrolicidina/química
10.
J Med Chem ; 64(14): 9960-9988, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34251197

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-ß1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.


Asunto(s)
Diseño de Fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
11.
ChemMedChem ; 15(21): 1985-2003, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32762071

RESUMEN

Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system. At present, there is no definitive cure, and the few available disease-modifying options display either poor efficacy or life-threatening side effects. There is clear evidence that relapsing-remitting clinical attacks in MS are driven by inflammatory demyelination and that the subsequent disease steps, being irresponsive to immunotherapy, result from neurodegeneration. The endocannabinoid system (ECS) stands halfway between three key pathomechanisms underlying MS, namely inflammation, neurodegeneration and oxidative stress, thus representing a kingpin for the identification of novel therapeutic targets in MS. This review summarizes the current state of the art in the field of endocannabinoid metabolism modulators and their in vivo effects on relevant animal models. We also highlight key molecular underpinnings of their therapeutic efficacy as well as the potential to turn them into promising clinical candidates.


Asunto(s)
Endocannabinoides/uso terapéutico , Inflamación/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Animales , Endocannabinoides/química , Endocannabinoides/metabolismo , Humanos , Inflamación/metabolismo , Estructura Molecular , Esclerosis Múltiple/metabolismo
12.
Biomed Res Int ; 2020: 5120230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714977

RESUMEN

Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Terapia Molecular Dirigida , Enfermedad de Alzheimer/patología , Animales , Endocannabinoides/metabolismo , Humanos , Ligandos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos
13.
J Med Chem ; 63(7): 3425-3446, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-31738537

RESUMEN

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter within the central nervous system (CNS) with fast, transsynaptic, and modulatory extrasynaptic effects being mediated by the ionotropic GABA type A receptors (GABAARs). These receptors are of particular interest because they are the molecular target of a number of pharmacological agents, of which the benzodiazepines (BZDs), such as diazepam, are the best described. The anxiolytic, sedating, and myorelaxant effects of BZDs are mediated by separate populations of GABAARs containing either α1, α2, α3, or α5 subunits and the molecular dissection of the pharmacology of BZDs indicates that subtype-selective GABAAR modulators will have novel pharmacological profiles. This is best exemplified by α2/α3-GABAAR positive allosteric modulators (PAMs) and α5-GABAAR negative allosteric modulators (NAMs), which were originally developed as nonsedating anxiolytics and cognition enhancers, respectively. This review aims to summarize the current state of the field of subtype-selective GABAAR modulators acting via the BZD binding site and their potential clinical indications.


Asunto(s)
Moduladores del GABA/uso terapéutico , Agonistas de Receptores de GABA-A/uso terapéutico , Antagonistas de Receptores de GABA-A/uso terapéutico , Receptores de GABA-A/metabolismo , Animales , Sitios de Unión , Moduladores del GABA/química , Moduladores del GABA/farmacología , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Estructura Molecular , Subunidades de Proteína/metabolismo , Receptores de GABA-A/química
15.
ChemMedChem ; 13(19): 2090-2103, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30085402

RESUMEN

The unique role of fatty acid amide hydrolase (FAAH) in terminating endocannabinoid (EC) signaling supports its relevance as a therapeutic target. Inhibition of EC metabolizing enzymes elicits indirect agonism of cannabinoid receptors (CBRs) and therapeutic efficacy devoid of psychotropic effects. Based on our previous ligands, and aiming at the discovery of new selective FAAH inhibitors, we developed a series of 12 new compounds characterized by functionalized tricyclic scaffolds. All the developed compounds display negligible activity on monoacylglycerol lipase (MAGL) and CBRs. The most potent FAAH inhibitors of the newly developed series, 6-oxo-5,6-dihydro-4H-benzo[f]pyrrolo[1,2-a][1,4]diazepin-9-yl-6-phenylhexylcarbamate (5 h) and 4-oxo-5,6-dihydro-4H-benzo[f]pyrrolo[1,2-a][1,4]diazepin-9-yl-(6-phenylhexyl)carbamate (5 i) (nanomolar FAAH inhibitors, the latter of which also shows micromolar affinity at the CB1 R), were selected for further studies. Results of cell-based studies on a neuroblastoma cell line (IMR32) demonstrated 5 h, 5 i, and our reference compound 3 ([3-(3-carbamoylpyrrol-1-yl)phenyl] N-(5-phenylpentyl)carbamate) to lack any cytotoxic effect, while all three showed the ability to decrease oxidative stress by reducing the expression of the redox-sensitive transcription factor NF-κB. Encouraged by these data, these compounds were studied in vivo and were dosed orally in a mouse model of neuropathic pain. At 10 mg kg-1 all the compounds were able to relieve the hypersensitivity induced by oxaliplatin.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzodiazepinonas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neuralgia/tratamiento farmacológico , Animales , Benzodiazepinonas/síntesis química , Benzodiazepinonas/farmacología , Benzodiazepinonas/toxicidad , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/toxicidad , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad
16.
J Med Chem ; 61(5): 2124-2130, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451794

RESUMEN

Starting from 1-4 and 7 structural templates, analogues based on bioisosteric replacements (5a-c vs 1, 2 and 6 vs 7) were synthesized for completing the SAR analysis. Interesting binding properties at GluA2, GluK1, and GluK3 receptors were discovered. The requirements for GluK3 interaction were elucidated by determining the X-ray structures of the GluK3-LBD with 2 and 5c and by computational studies. Antinociceptive potential was demonstrated for GluK1 partial agonist 3 and antagonist 7 (2 mg/kg ip).


Asunto(s)
Receptores de Ácido Kaínico/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/análogos & derivados , Analgésicos/química , Animales , Cristalografía por Rayos X , Ligandos , Unión Proteica , Receptores AMPA , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/química , Receptor Kainato GluK3
17.
ChemMedChem ; 12(24): 2074-2085, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29131552

RESUMEN

A computational analysis of the X-ray structure of the low-density lipoprotein receptor-related protein 6 (LRP6) with the Dickkopf-1 (DKK1) C-terminal fragment has allowed us to rationally design a small set of decapeptides. These compounds behave as agonists of the canonical Wnt pathway in the micromolar range when tested on a dual luciferase Wnt functional assay in glioblastoma cells. Two of the oligopeptides showed a lack of cytotoxicity in human primary osteoblasts isolated from sponge bone tissue (femoral heads or knees of elderly patients). According to the mechanism of action, the studies revealed a dose- and time-dependent increase in the viability of human osteoblasts. These results may indicate a potential therapeutic application of this class of compounds in the treatment of bone diseases related to aging, such as osteoporosis.


Asunto(s)
Diseño de Fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Oligopéptidos/farmacología , Osteoblastos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Anciano , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Modelos Moleculares , Conformación Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Osteoblastos/patología , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Tiempo
18.
Front Neurosci ; 10: 451, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27761108

RESUMEN

D3 receptors represent a major focus of current drug design and development of therapeutics for dopamine-related pathological states. Their close homology with the D2 receptor subtype makes the development of D3 selective antagonists a challenging task. In this review, we explore the relevance and therapeutic utility of D3 antagonists or partial agonists endowed with multireceptor affinity profile in the field of central nervous system disorders such as schizophrenia and drug abuse. In fact, the peculiar distribution and low brain abundance of D3 receptors make them a valuable target for the development of drugs devoid of motor side effects classically elicited by D2 antagonists. Recent research efforts were devoted to the conception of chemical templates possibly endowed with a multi-target profile, especially with regards to other G-protein-coupled receptors (GPCRs). A comprehensive overview of the recent literature in the field is herein provided. In particular, the evolution of the chemical templates has been tracked, according to the growing advancements in both the structural information and the refinement of the key pharmacophoric elements. The receptor/multireceptor affinity and functional profiles for the examined compounds have been covered, together with their most significant pharmacological applications.

19.
Future Med Chem ; 8(13): 1573-87, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27556815

RESUMEN

AIM: Histone deacetylases (HDACs) regulate the expression and activity of numerous proteins involved in the initiation and progression of cancer. Currently, three hydroxamate-containing HDAC pan-inhibitors have been approved as antitumor agents. RESULTS: We herein present the development of a series of novel phenylpyrrole-based derivatives stemmed from combined computational and medicinal chemistry efforts to rationally modulate HDAC1/6 isoform selectivity. In vitro activity on HDAC1 and HDAC6 isoforms and the effects of selected analogs on histone H3 and α-tubulin acetylation levels were determined. Cell-based data evidenced, for selected compounds, a promising antitumor potential and low toxicity on normal cells. CONCLUSION: The newly developed compounds represent a valuable starting point for the development of novel anticancer agents.


Asunto(s)
Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Pirroles/farmacología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/química , Humanos , Modelos Moleculares , Estructura Molecular , Pirroles/química
20.
Eur J Med Chem ; 117: 301-20, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27150036

RESUMEN

Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds.


Asunto(s)
Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Microtúbulos/metabolismo , Péptidos Cíclicos/química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Relación Estructura-Actividad , Tubulina (Proteína)/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...