Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Inorg Chem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742626

RESUMEN

There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aß1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.

2.
Bioorg Chem ; 147: 107404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678777

RESUMEN

Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.


Asunto(s)
Histidina , Proteínas Nucleares , Nucleofosmina , Humanos , Secuencia de Aminoácidos , Amiloide/química , Histidina/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética
3.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504518

RESUMEN

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos , Microglía , Osteopontina , Neovascularización Retiniana , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/etiología , Osteopontina/metabolismo , Osteopontina/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Regulación de la Expresión Génica , Transducción de Señal , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Angiogénesis
4.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255885

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.


Asunto(s)
Antifibrinolíticos , Leucemia Mieloide Aguda , Adulto , Humanos , Niño , Aminoácidos , Proteínas Amiloidogénicas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética
5.
Inorg Chem ; 63(1): 564-575, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38117944

RESUMEN

The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aß1-42 peptide and its peculiar fragments, Aß1-16 and Aß21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aß1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Fragmentos de Péptidos/química , Péptidos beta-Amiloides/química , Dicroismo Circular
6.
iScience ; 26(12): 108308, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025772

RESUMEN

Low response rates and immune-related adverse events limit the remarkable impact of cancer immunotherapy. To improve clinical outcomes, preclinical studies have shown that combining immunotherapies with N-terminal Hsp90 inhibitors resulted in improved efficacy, even though induction of an extensive heat shock response (HSR) and less than optimal dosing of these inhibitors limited their clinical efficacy as monotherapies. We discovered that the natural product Enniatin A (EnnA) targets Hsp90 and destabilizes its client oncoproteins without inducing an HSR. EnnA triggers immunogenic cell death in triple-negative breast cancer (TNBC) syngeneic mouse models and exhibits superior antitumor activity compared to Hsp90 N-terminal inhibitors. EnnA reprograms the tumor microenvironment (TME) to promote CD8+ T cell-dependent antitumor immunity by reducing PD-L1 levels and activating the chemokine receptor CX3CR1 pathway. These findings provide strong evidence for transforming the immunosuppressive TME into a more tumor-hostile milieu by engaging Hsp90 with therapeutic agents involving novel mechanisms of action.

7.
mBio ; 14(5): e0132923, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37707438

RESUMEN

IMPORTANCE: In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.


Asunto(s)
Bacteriófagos , Klebsiella , Klebsiella/genética , Bacteriófagos/genética , Klebsiella pneumoniae/genética
8.
Dalton Trans ; 52(36): 12677-12685, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37655459

RESUMEN

Platinum (Pt)(II) square planar complexes are well-known anticancer drugs whose Mechanism of Action (MOA) are finely tuned by the polar, hydrophobic and aromatic features of the ligands. In the attempt to translate this tunability to the identification of potential neurodrugs, herein, four Pt(II) complexes were investigated in their ability to modulate the self-aggregation processes of two amyloidogenic models: Sup35p7-13 and NPM1264-277 peptides. In particular, phenanthriplatin revealed the most efficient agent in the modulation of amyloid aggregation: through several biophysical assays, as Thioflavin T (ThT), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) absorption spectroscopy, this complex revealed able to markedly suppress aggregation and to disassemble small soluble aggregates. This effect was due to a direct coordination of phenanthriplatin to the amyloid, with the loss of several ligands and different stoichiometries, by the formation of π-π and π-cation interactions as indicated from molecular dynamic simulations. Presented data support a growing and recent approach concerning the repurposing of metallodrugs as potential novel neurotherapeutics.


Asunto(s)
Proteínas Amiloidogénicas , Platino (Metal) , Platino (Metal)/farmacología , Ligandos , Compuestos Organoplatinos/farmacología
9.
Dalton Trans ; 52(25): 8549-8557, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37264643

RESUMEN

Neurodegenerative diseases are often characterized by the formation of aggregates of amyloidogenic peptides and proteins, facilitating the formation of neurofibrillary plaques. In this study, we investigate a series of Ru-complexes sharing three-legged piano-stool structures based on the arene ring and glucosylated carbene ligands. The ability of these complexes to bind amyloid His-peptides was evaluated by ESI-MS, and their effects on the aggregation process were investigated through ThT and Tyr fluorescence emission. The complexes were demonstrated to bind the amyloidogenic peptides even with different mechanisms and kinetics depending on the chemical nature of the ligands around the Ru(II) ion. TEM analysis detected the disaggregation of typical fibers caused by the presence of Ru-compounds. Overall, our results show that the Ru-complexes can modulate the aggregation of His-amyloids and can be conceived as good lead compounds in the field of novel anti-aggregating agents in neurodegeneration.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Estructura Molecular , Antineoplásicos/química , Rutenio/farmacología , Rutenio/química , Histidina , Ligandos , Péptidos , Proteínas Amiloidogénicas , Complejos de Coordinación/química
10.
Inorg Chem ; 62(26): 10470-10480, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37338927

RESUMEN

Neurodegenerative diseases are often associated with an uncontrolled amyloid aggregation. Hence, many studies are oriented to discover new compounds that are able to modulate self-recognition mechanisms of proteins involved in the development of these pathologies. Herein, three metal-complexes able to release carbon monoxide (CORMs) were analyzed for their ability to affect the self-aggregation of the amyloidogenic fragment of nucleophosmin 1, corresponding to the second helix of the three-helix bundle located in the C-terminal domain of the protein, i.e., NPM1264-277, peptide. These complexes were two cymantrenes coordinated to the nucleobase adenine (Cym-Ade) and to the antibiotic ciprofloxacin (Cym-Cipro) and a Re(I)-compound containing 1,10-phenanthroline and 3-CCCH2NHCOCH2CH2-6-bromo-chromone as ligands (Re-Flavo). Thioflavin T (ThT) assay, UV-vis absorption and fluorescence spectroscopies, scanning electron microscopy (SEM), and electrospray ionization mass spectrometry (ESI-MS) indicated that the three compounds have different effects on the peptide aggregation. Cym-Ade and Cym-Cipro act as aggregating agents. Cym-Ade induces the formation of NPM1264-277 fibers longer and stiffer than that formed by NPM1264-277 alone; irradiation of complexes speeds the formation of fibers that are more flexible and thicker than those found without irradiation. Cym-Cipro induces the formation of longer fibers, although slightly thinner in diameter. Conversely, Re-Flavo acts as an antiaggregating agent. Overall, these results indicate that metal-based CORMs with diverse structural features can have a different effect on the formation of amyloid fibers. A proper choice of ligands attached to metal can allow the development of metal-based drugs with potential application as antiamyloidogenic agents.


Asunto(s)
Complejos de Coordinación , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ligandos , Metales , Péptidos , Proteínas Nucleares , Ciprofloxacina , Amiloide , Péptidos beta-Amiloides
11.
Immunol Res ; 71(1): 70-82, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385678

RESUMEN

High levels of human group IIA secreted phospholipase A2 (hGIIA) have been associated with various inflammatory disease conditions. We have recently shown that hGIIA activity and concentration are increased in the plasma of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) and negatively correlate with C1-INH plasma activity. In this study, we analyzed whether the presence of both hGIIA and C1-INH impairs their respective function on immune cells. hGIIA, but not recombinant and plasma-derived C1-INH, stimulates the production of IL-6, CXCL8, and TNF-α from peripheral blood mononuclear cells (PBMCs). PBMC activation mediated by hGIIA is blocked by RO032107A, a specific hGIIA inhibitor. Interestingly, C1-INH inhibits the hGIIA-induced production of IL-6, TNF-α, and CXCL8, while it does not affect hGIIA enzymatic activity. On the other hand, hGIIA reduces the capacity of C1-INH at inhibiting C1-esterase activity. Spectroscopic and molecular docking studies suggest a possible interaction between hGIIA and C1-INH but further experiments are needed to confirm this hypothesis. Together, these results provide evidence for a new interplay between hGIIA and C1-INH, which may be important in the pathophysiology of hereditary angioedema.


Asunto(s)
Angioedemas Hereditarios , Proteína Inhibidora del Complemento C1 , Fosfolipasas A2 Grupo II , Humanos , Interleucina-6 , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Proteína Inhibidora del Complemento C1/química , Proteína Inhibidora del Complemento C1/metabolismo , Fosfolipasas A2 Grupo II/química , Fosfolipasas A2 Grupo II/metabolismo
12.
J Pept Sci ; 29(8): e3474, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36579727

RESUMEN

Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Iones/química , Temperatura , Sistemas de Liberación de Medicamentos
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499032

RESUMEN

In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation. Protein aggregation can be due to the cooperation among several hot spots located within the aggregation-prone regions (APR), often predictable with bioinformatic tools. In the present study, we investigated potential APRs in the entire NPM1 not yet investigated. On the basis of bioinformatic predictions and experimental structures, we designed several protein fragments and analyzed them through typical aggrsegation experiments, such as Thioflavin T (ThT), fluorescence and scanning electron microscopy (SEM) experiments, carried out at different times; in addition, their biocompatibility in SHSY5 cells was also evaluated. The presented data clearly demonstrate the existence of hot spots of aggregation located in different regions, mostly in the N-terminal domain (NTD) of the entire NPM1 protein, and provide a more comprehensive view of the molecular details potentially at the basis of NPMc+-dependent AML.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina/genética
14.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499249

RESUMEN

In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Neoplasias , Humanos , Aptámeros de Nucleótidos/química , Anticoagulantes/química , Trombina/metabolismo
15.
Soft Matter ; 18(44): 8418-8426, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36300826

RESUMEN

Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.


Asunto(s)
Nanoestructuras , Péptidos , Péptidos/química , Hidrogeles/química , Nanoestructuras/química , Reología , Proteínas
16.
Eur J Med Chem ; 243: 114781, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36152385

RESUMEN

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.


Asunto(s)
Quinasas Janus , Proteínas Supresoras de la Señalización de Citocinas , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Citocinas/metabolismo
17.
Bioorg Chem ; 127: 106001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803020

RESUMEN

The "Acute Myeloid Leukemia with gene mutations'' group includes mutations in Nucleophosmin 1(NPM1) that is an abundant multifunctional protein with chaperon functions. This protein also takes part to rRNA maturation in ribosome biogenesis, tumor suppression and nucleolar stress response. Mutations of NPM1 associated to AML present in its C-terminal domain (CTD) unable its correct folding and confer it an aberrant cytoplasmatic localization (NPMc+). AML cells with NPM1 mutations retain a certain amount of wt NPM1 in the nucleolus and since NPM1 acts as a hub protein, the nucleolus of AML cells are more vulnerable with respect to cells expressing only wt NPM1. Thus, interfering with the levels or the oligomerization status of NPM1 may influence its capability to properly build up the nucleolus in AML cells. Our biophysical recent results demonstrated that AML-CTDs contain regions prone to amyloid aggregation and, herein, we present results oriented to exploit this amylodogenesis in a potential therapeutic way. We evaluated the different ability of two small molecules to enhance amyloid aggregation through complementary biophysical approaches as fluorescence and Circular Dichroism spectroscopies, Scanning Electron Microscopy and cell-viability assays, to evaluate the cytoxicity of these molecules in AML cells lines. These findings could pave the way into molecular mechanisms of NPM1c and in novel therapeutic routes toward AML progression.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Amiloide , Proteínas Amiloidogénicas , Humanos , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética
18.
Biochim Biophys Acta Gen Subj ; 1866(8): 130173, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35597503

RESUMEN

BACKGROUND: Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE: Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS: Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE: The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Amiloidogénicas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Nucleofosmina/genética , Nucleofosmina/metabolismo
19.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455455

RESUMEN

SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells). With the aim to improve drug-like features of KIRCONG, herein we reported novel cyclic analogues bearing different linkages. In detail, in two of them hydrocarbon cycles of different lengths were inserted at positions i/i+5 and i/i+7 to improve helical conformations of mimetics. Structural features of cyclic compounds were investigated by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopies while their ability to bind to catalytic domain of JAK2 was assessed through MST (MicroScale Thermophoresis) assay as well as their stability in biological serum. Overall data indicate a crucial role exerted by the length and the position of the cycle within the chimeric structure and could pave the way to the miniaturization of SOCS3 protein for therapeutic aims.

20.
Bioorg Chem ; 122: 105680, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248981

RESUMEN

The lipid phosphatase Ship2 binds the EphA2 receptor through a heterotypic Sam-Sam (Sterile alpha motif) interaction. Inhibitors of the Ship2-Sam/EphA2-Sam complex hold a certain potential as novel anticancer agents. The previously reported "KRI3" peptide binds Ship2-Sam working as a weak antagonist of the EphA2-Sam/Ship2-Sam interaction. Herein, the design and functional evaluation of KRI3 analogues, both linear and cyclic, are described. A multidisciplinary study was conducted through computational docking techniques, and conformational analyses by CD and NMR spectroscopies. The ability of new peptides to bind Ship2-Sam was analysed by NMR, MST and SPR assays. Studies on linear KRI3 analogues pointed out that aromatic interactions through tyrosines are important for the association with Ship2-Sam whereas, an increase of the net positive charge of the sequence or peptide cyclization through a disulfide bridge can favour unspecific interactions without a substantial improvement of the binding affinity to Ship2-Sam. Interestingly, preliminary cell-based assays demonstrated KRI3 cellular uptake even without the conjugation to a cell penetrating sequence with a main cytosolic localization. This work highlights important features of the KRI3 peptide that can be further exploited to design analogues able to hamper Sam-Sam interactions driven by electrostatic contacts.


Asunto(s)
Receptor EphA2 , Motivo alfa Estéril , Ligandos , Espectroscopía de Resonancia Magnética , Péptidos/química , Receptor EphA2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...