Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 120(3): 439-461, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485800

RESUMEN

The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.


Asunto(s)
Bacillus subtilis , Factores de Transcripción , Factores de Transcripción/metabolismo , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Madre/metabolismo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Transcripción Genética , Factor sigma/genética , Factor sigma/metabolismo
2.
Mycopathologia ; 187(5-6): 527-534, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36355325

RESUMEN

Candida auris is a nosocomial fungal pathogen of prime importance due to its global emergence and rapid spread in healthcare facilities worldwide. One important concern is that routine, conventional methods fail to identify C. auris. While molecular and protein-based assays accurately detect/identify C. auris, these methods are time-consuming, expensive, and require expertise. Therefore, the objective of the present study was to assess the potential use of a novel chromogenic medium, CHROMagar™ Candida Plus, as an economical alternative to expensive and laborious diagnostic tests. We compared CHROMagar™ Candida Plus with the standard enrichment (salt Sabouraud Dulcitol broth) medium to test the recovery efficiency of C. auris from surveillance samples. We also tested CHROMagar™ Candida Plus for its ability to distinguish C. auris from other yeast species. One hundred surveillance samples were cultured on CHROMagar™ Candida Plus and Dulcitol broth and incubated at 37 °C and 40 °C, respectively. Additionally, 32 Candida and yeast species were cultured on CHROMagar™ Candida Plus at 37 °C for three days to rule out any close resemblance to C. auris. Of 100 surveillance samples tested, 69 yielded presumptive positive C. auris exhibiting creamy pink colonies with a blue halo on CHROMagar™ Candida Plus within three days of incubation, and MALDI-TOF MS confirmed all by day 4. On the other hand, 69 of 100 surveillance samples yielded turbidity in Dulcitol broth by days 3-14 with final MALDI identification by days 5 to 17. Both media failed to identify one sample each, resulting in assay sensitivity and specificity of 99% and 97%, respectively. Of Candida and yeast species tested, 75-80% of C. metapsilosis and C. orthospilosis were misidentified as C. auris. However, previous studies indicated that these species are rarely detected in surveillance screening of C. auris. Naganishia diffluens also resembled C. auris, although it required different temperature growth (30 °C). In conclusion, CHROMagar™ Candida Plus provides rapid presumptive identification of C. auris. It would be another valuable tool in surveillance efforts to control the spread of C. auris in healthcare.


Asunto(s)
Candida auris , Candida , Candida parapsilosis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Galactitol
3.
mBio ; 13(1): e0169421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012345

RESUMEN

In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.


Asunto(s)
Bacillus subtilis , Proteínas Quinasas , Histidina Quinasa/metabolismo , Proteínas Quinasas/genética , Bacillus subtilis/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosforilación , Biopelículas , Esporas Bacterianas/genética
4.
PLoS Negl Trop Dis ; 15(9): e0009765, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529679

RESUMEN

Coccidioidomycosis (Valley fever) is a pulmonary and systemic fungal disease with increasing incidence and expanding endemic areas. The differentiation of etiologic agents Coccidioides immitis and C. posadasii remains problematic in the clinical laboratories as conventional PCR and satellite typing schemes are not facile. Therefore, we developed Cy5- and FAM-labeled TaqMan-probes for duplex real-time PCR assay for rapid differentiation of C. immitis and C. posadasii from culture and clinical specimens. The RRA2 gene encoding proline-rich antigen 2, specific for Coccidioides genus, was the source for the first set of primers and probe. Coccidioides immitis contig 2.2 (GenBank: AAEC02000002.1) was used to design the second set of primers and probe. The second primers/probe did not amplify the corresponding C. posadasii DNA, because of an 86-bp deletion in the contig. The assay was highly sensitive with limit of detection of 0.1 pg gDNA/PCR reaction, which was equivalent to approximately ten genome copies of C. immitis or C. posadasii. The assay was highly specific with no cross-reactivity to the wide range of fungal and bacterial pathogens. Retrospective analysis of fungal isolates and primary specimens submitted from 1995 to 2020 confirmed 168 isolates and four primary specimens as C. posadasii and 30 isolates as C. immitis from human coccidioidomycosis cases, while all eight primary samples from two animals (rhesus monkey and rhinoceros) were confirmed as C. posadasii. A preliminary analysis of cerebrospinal fluid (CSF) and pleural fluid samples showed positive correlation between serology tests and real-time PCR for two of the 15 samples. The Coccidioides spp. duplex real-time PCR will allow rapid differentiation of C. immitis and C. posadasii from clinical specimens and further augment the treatment and surveillance of coccidioidomycosis.


Asunto(s)
Coccidioides/clasificación , Coccidioidomicosis/diagnóstico , Coccidioidomicosis/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencia de Bases , Coccidioidomicosis/epidemiología , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Especificidad de la Especie
5.
J Mol Evol ; 86(5): 264-276, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29748740

RESUMEN

It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.


Asunto(s)
ARN Polimerasa Dependiente del ARN/metabolismo , ARN/genética , Composición de Base/genética , Secuencia de Bases , Nucleótidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...