Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507185

RESUMEN

Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes. Here we aimed to engineer poplar with optimized pathways to produce squalene, a triterpene commonly used in cosmetic oils, a potential biofuel candidate, and the precursor to the further diversified classes of triterpenoids and sterols. The squalene production pathways were either re-targeted from the cytosol to plastids or co-produced with lipid droplets in the cytosol. Squalene and lipid droplet co-production appeared to be toxic, which we hypothesize to be due to disruption of adventitious root formation, suggesting a need for tissue specific production. Plastidial squalene production enabled up to 0.63 mg/g fresh weight in leaf tissue, which also resulted in reductions in isoprene emission and photosynthesis. These results were also studied through a technoeconomic analysis, providing further insight into developing poplar as a production host.

2.
Environ Sci Technol ; 57(25): 9405-9415, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37318093

RESUMEN

Ammonia is considered a contaminant to be removed from wastewater. However, ammonia is a valuable commodity chemical used as the primary feedstock for fertilizer manufacturing. Here we describe a simple and low-cost ammonia gas stripping membrane capable of recovering ammonia from wastewater. The material is composed of an electrically conducting porous carbon cloth coupled to a porous hydrophobic polypropylene support, that together form an electrically conductive membrane (ECM). When a cathodic potential is applied to the ECM surface, hydroxide ions are produced at the water-ECM interface, which transforms ammonium ions into higher-volatility ammonia that is stripped across the hydrophobic membrane material using an acid-stripping solution. The simple structure, low cost, and easy fabrication process make the ECM an attractive material for ammonia recovery from dilute aqueous streams, such as wastewater. When paired with an anode and immersed into a reactor containing synthetic wastewater (with an acid-stripping solution providing the driving force for ammonia transport), the ECM achieved an ammonia flux of 141.3 ± 14.0 g.cm-2.day-1 at a current density of 6.25 mA.cm-2 (69.2 ± 5.3 kg(NH3-N)/kWh). It was found that the ammonia flux was sensitive to the current density and acid circulation rate.


Asunto(s)
Amoníaco , Compuestos de Amonio , Amoníaco/análisis , Amoníaco/química , Aguas Residuales , Compuestos de Amonio/química , Electricidad , Iones
3.
Environ Sci Technol ; 57(27): 10096-10106, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37368842

RESUMEN

Recovery of carbon-based resources from waste is a critical need for achieving carbon neutrality and reducing fossil carbon extraction. We demonstrate a new approach for extracting volatile fatty acids (VFAs) using a multifunctional direct heated and pH swing membrane contactor. The membrane is a multilayer laminate composed of a carbon fiber (CF) bound to a hydrophobic membrane and sealed with a layer of polydimethylsiloxane (PDMS); this CF is used as a resistive heater to provide a thermal driving force for PDMS that, while a highly hydrophobic material, is known for its ability to rapidly pass gases, including water vapor. The transport mechanism for gas transport involves the diffusion of molecules through the free volume of the polymer matrix. CF coated with polyaniline (PANI) is used as an anode to induce an acidic pH swing at the interface between the membrane and water, which can protonate the VFA molecule. The innovative multilayer membrane used in this study has successfully demonstrated a highly efficient recovery of VFAs by simultaneously combining pH swing and joule heating. This novel technique has revealed a new concept in the field of VFA recovery, offering promising prospects for further advancements in this area. The energy consumption was 3.37 kWh/kg for acetic acid (AA), and an excellent separation factor of AA/water of 51.55 ± 2.11 was obtained with high AA fluxes of 51.00 ± 0.82 g.m-2hr-1. The interfacial electrochemical reactions enable the extraction of VFAs without the need for bulk temperature and pH modification.


Asunto(s)
Ácido Acético , Ácidos Grasos Volátiles , Ácidos Grasos Volátiles/química , Gases , Fenómenos Físicos , Carbono
4.
ChemSusChem ; 13(8): 1922, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32285625

RESUMEN

Invited for this month's cover is the research team from the D.O.E. Great Lake Bioenergy Research Center (GLBRC) at the University of Wisconsin-Madison. The cover image shows how a diverse team with expertise in many different fields works together in an integrated fashion to address complex problems. Only when the whole system, from field to the liquid fuels and co-products, is assessed, can we identify the key parameters needed to design an economically viable biorefinery-based economy. Cover art by Chelsea Mamott. The Full Paper itself is available at 10.1002/cssc.201903345.

5.
ChemSusChem ; 13(8): 2012-2024, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31984673

RESUMEN

The hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) add diversity to the portfolio of products produced by using grass-fed lignocellulosic biorefineries. The level of lignin-bound pCA in Zea mays was modified by the alteration of p-coumaroyl-CoA monolignol transferase expression. The biomass was processed in a lab-scale alkaline-pretreatment biorefinery process and the data were used for a baseline technoeconomic analysis to determine where to direct future research efforts to couple plant design to biomass utilization processes. It is concluded that future plant engineering efforts should focus on strategies that ramp up accumulation of one type of hydroxycinnamate (pCA or FA) predominantly and suppress that of the other. Technoeconomic analysis indicates that target extraction titers of one hydroxycinnamic acid need to be >50 g kg-1 biomass, at least five times higher than observed titers for the impure pCA/FA product mixture from wild-type maize. The technical challenge for process engineers is to develop a viable process that requires more than 80 % reduction of the isolation costs.

6.
Green Chem ; 22(16): 5285-5295, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34703386

RESUMEN

We report a process to produce a versatile platform chemical from biomass-derived fructose for organic dye, polymer, and liquid fuel industries. An aldol-condensed chemical (HAH) is synthesized as a platform chemical from fructose by catalytic reactions in acetone/water solvent with non-noble metal catalysts (e.g., HCl, NaOH). Then, selective reactions (e.g., etherification, reduction, dimerization) of the functional groups, such as enone and hydroxyl groups, in the HAH molecule enable applications in organic dyes and polyether precursors. High yields of target products, such as 5-(hydroxymethyl) furfural (HMF) (85.9% from fructose) and HAH (86.3% from HMF) are achieved by sequential dehydration and aldol-condensation with a simple purification process (>99% HAH purity). The use of non-noble metal catalysts, the high yield of each reaction, and the simple purification of the target product allow for beneficial economics of the process. Techno-economic analysis indicates that the process produces HAH at minimum selling price (MSP) of $1958/ton. The MSP of HAH product allows the economic viability of applications in organic dye and polyether markets by replacing its counterparts, such as anthraquinone ($3200-$3900/ton) and bisphenol-A ($1360-$1720/ton).

7.
iScience ; 23(1): 100751, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31884163

RESUMEN

We study the economics and energy efficiency of biorefineries employing lignin valorization. We use superstructure-based process synthesis to study different configurations under different types of constraints. Using optimization, we examine the impact of various parameters for lignin valorization such as bioproduct selling price, production cost, conversion coefficient, and energy requirement. The results show that the optimal strategy leading to a minimum ethanol selling price (MESP) of $3.44/GGE does not include lignin valorization. Results indicate that under certain scenarios, the optimal biorefinery strategies with lignin valorization tend to be energy deficient, and thus the optimal pretreatment technology may switch from γ-valerolactone-based deconstruction to ammonia fiber expansion. Further analysis is performed to study how improvements in combinations of selected parameters can lead to lower cost for a thermal-neural biorefinery.

8.
iScience ; 15: 136-146, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31048148

RESUMEN

Although several "renewable" strategies have been recently proposed to produce high-volume as well as new (replacement) chemicals, the identification of good targets for such strategies remains challenging. Such chemicals that are expensive to obtain today from fossil fuel feedstocks would have an advantage if produced cheaply using alternative methods in the future. In this work we identify the characteristics of such potentially promising replacement chemicals. We also identify the characteristic of promising bio-based replacement chemicals that are relatively easy to obtain through bio-conversions. This work provides insights into the development of renewable chemicals to support a sustainable economy.

9.
Adv Sci (Weinh) ; 6(8): 1801903, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31016111

RESUMEN

This work aims to provide an overview of producing value-added products affordably and sustainably from greenhouse gases (GHGs). Methanol (MeOH) is one such product, and is one of the most widely used chemicals, employed as a feedstock for ≈30% of industrial chemicals. The starting materials are analogous to those feeding natural processes: water, CO2, and light. Innovative technologies from this effort have global significance, as they allow GHG recycling, while providing society with a renewable carbon feedstock. Light, in the form of solar energy, assists the production process in some capacity. Various solar strategies of continually increasing technology readiness levels are compared to the commercial MeOH process, which uses a syngas feed derived from natural gas. These strategies include several key technologies, including solar-thermochemical, photochemical, and photovoltaic-electrochemical. Other solar-assisted technologies that are not yet commercial-ready are also discussed. The commercial-ready technologies are compared using a technoeconomic analysis, and the scalability of solar reactors is also discussed in the context of light-incorporating catalyst architectures and designs. Finally, how MeOH compares against other prospective products is briefly discussed, as well as the viability of the most promising solar MeOH strategy in an international context.

10.
Biotechnol Biofuels ; 11: 294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386431

RESUMEN

BACKGROUND: Recent advances in metabolic engineering enable the production of chemicals from sugars through microbial bio-conversion. Terpenes have attracted substantial attention due to their relatively high prices and wide applications in different industries. To this end, we synthesize and assess processes for microbial production of terpenes. RESULTS: To explain a counterintuitive experimental phenomenon where terpenes such as limonene (normal boiling point 176 °C) are often found to be 100% present in the vapor phase after bio-conversion (operating at only ~ 30 °C), we first analyze the vapor-liquid equilibrium for systems containing terpenes. Then, we propose alternative production configurations, which are further studied, using limonene as an example, in several case studies. Next, we perform economic assessment of the alternative processes and identify the major cost components. Finally, we extend the assessment to account for different process parameters, terpene products, ways to address terpene toxicity (microbial engineering vs. solvent use), and cellulosic biomass as a feedstock. We identify the key cost drivers to be (1) feed glucose concentration (wt%), (2) product yield (% of maximum theoretical yield) and (3) VVM (Volume of air per Volume of broth liquid per Minute, i.e., aeration rate in min-1). The production of limonene, based on current experimental data, is found to be economically infeasible (production cost ~ 465 $/kg vs. market selling price ~ 7 $/kg), but higher glucose concentration and yield can lower the cost. Among 12 terpenes studied, limonene appears to be the most reasonable short-term target because of its large market size (~ 160 million $/year in the US) and the relatively easier to achieve break-even yield (~ 30%, assuming a 14 wt% feed glucose concentration and 0.1 min-1 VVM). CONCLUSIONS: The methods proposed in this work are applicable to a range of terpenes as well as other extracellular insoluble chemicals with density lower than that of water, such as fatty acids. The results provide guidance for future research in metabolic engineering toward terpenes production in terms of setting targets for key design parameters.

11.
Biotechnol Bioeng ; 115(9): 2328-2340, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29940066

RESUMEN

Recent progress in metabolic engineering and synthetic biology enables the use of microorganisms for the production of chemicals-"bio-based chemicals." However, it is still unclear which chemicals have the highest economic prospect. To this end, we develop a framework for the identification of such promising ones. Specifically, we first develop a genome-scale constraint-based metabolic modeling approach, which is used to identify a candidate pool of 209 chemicals (together with the estimated yield, productivity, and residence time for each) from the intersection of the high-production-volume chemicals and the KEGG and MetaCyc databases. Second, we design three screening criteria based on a chemical's profit margin, market volume, and market size. The total process cost, including the downstream separation cost, is systematically incorporated into the evaluation. Third, given the three aforementioned criteria, we identify 32 products as economically promising if the maximum yields can be achieved, and 22 products if the maximum productivities can be achieved. The breakeven titer that renders zero profit margin for each product is also presented. Comparisons between extracellular and intracellular production, as well as Escherichia coli and Saccharomyces cerevisiae systems are also discussed. The proposed framework provides important guidance for future studies in the production of bio-based chemicals. It is also flexible in that the databases, yield estimations, and criteria can be modified to customize the screening.


Asunto(s)
Productos Biológicos/metabolismo , Biotecnología/métodos , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Productos Biológicos/economía , Biotecnología/economía , Biología Computacional/métodos , Costos y Análisis de Costo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fermentación , Ingeniería Metabólica/economía , Redes y Vías Metabólicas/genética , Metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
12.
Sci Adv ; 4(1): eaap9722, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29372184

RESUMEN

We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.

13.
Faraday Discuss ; 202: 247-267, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28678237

RESUMEN

Catalytic strategies for the synthesis of 1,5-pentanediol (PDO) with 69% yield from hemicellulose and the synthesis of 1,6-hexanediol (HDO) with 28% yield from cellulose are presented. Fractionation of lignocellulosic biomass (white birch wood chips) in gamma-valerolactone (GVL)/H2O generates a pure cellulose solid and a liquid stream containing hemicellulose and lignin, which is further dehydrated to furfural with 85% yield. Furfural is converted to PDO with sequential dehydration, hydration, ring-opening tautomerization, and hydrogenation reactions. Acid-catalyzed cellulose dehydration in tetrahydrofuran (THF)/H2O produces a mixture of levoglucosenone (LGO) and 5-hydroxymethylfurfural (HMF), which are converted with hydrogen to tetrahydrofuran-dimethanol (THFDM). HDO is then obtained from hydrogenolysis of THFDM. Techno-economic analysis demonstrates that this approach can produce HDO and PDO at a minimum selling price of $4090 per ton.


Asunto(s)
Glicoles/síntesis química , Lignina/química , Pentanos/síntesis química , Biomasa , Catálisis , Deshidratación , Glicoles/química , Concentración de Iones de Hidrógeno , Pentanos/química
14.
Biotechnol Biofuels ; 10: 119, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28503196

RESUMEN

BACKGROUND: Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. RESULTS: We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. CONCLUSIONS: The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the parametric sensitivity provides an opportunity to make crucial design and selection decisions in a comprehensive and rational manner. This will prove valuable in the selection of chemicals to be produced using bioconversions (bioproducts) as well as in creating better bioseparation flow sheets for detailed economic assessment and process implementation on the commercial scale.

15.
ChemSusChem ; 10(7): 1351-1355, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28277620

RESUMEN

A process for the synthesis of 1,5-pentanediol (1,5-PD) with 84 % yield from furfural is developed, utilizing dehydration/hydration, ring-opening tautomerization, and hydrogenation reactions. Although this process has more reaction steps than the traditional direct hydrogenolysis of tetrahydrofurfuryl alcohol (THFA), techno-economic analyses demonstrate that this process is the economically preferred route for the synthesis of biorenewable 1,5-PD. 2-Hydroxytetrahydropyran (2-HY-THP) is the key reaction pathway intermediate that allows for a decrease in the minimum selling price of 1,5-PD. The reactivity of 2-HY-THP is 80 times greater than that of THFA over a bimetallic hydrogenolysis catalyst. This enhanced reactivity is a result of the ring-opening tautomerization to 5-hydoxyvaleraldehyde and subsequent hydrogenation to 1,5-PD.


Asunto(s)
Biomasa , Furaldehído/química , Glicoles/química , Pentanos/química , Hidrogenación , Isomerismo
16.
Biotechnol Adv ; 34(8): 1362-1383, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27756578

RESUMEN

Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals.


Asunto(s)
Biotecnología/métodos , Fraccionamiento Químico/métodos , Reactores Biológicos , Dióxido de Carbono , Precipitación Química , Solubilidad
17.
Bioresour Technol ; 182: 258-266, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704099

RESUMEN

The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Carbohidratos/química , Etanol/química , Etanol/economía , Lignina/química , Biocombustibles/economía , Biomasa , Biotecnología/economía , Metabolismo de los Hidratos de Carbono , Catálisis , Costos y Análisis de Costo , Enzimas/metabolismo , Fermentación , Hidrólisis , Lactonas/química , Solventes/química , Temperatura , Zea mays/química
18.
Annu Rev Chem Biomol Eng ; 5: 97-121, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910915

RESUMEN

The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.


Asunto(s)
Algoritmos , Industria Química/métodos , Biología Computacional/métodos , Modelos Teóricos , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Tiempo
19.
Science ; 343(6168): 277-80, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24436415

RESUMEN

Widespread production of biomass-derived fuels and chemicals will require cost-effective processes for breaking down cellulose and hemicellulose into their constituent sugars. Here, we report laboratory-scale production of soluble carbohydrates from corn stover, hardwood, and softwood at high yields (70 to 90%) in a solvent mixture of biomass-derived γ-valerolactone (GVL), water, and dilute acid (0.05 weight percent H2SO4). GVL promotes thermocatalytic saccharification through complete solubilization of the biomass, including the lignin fraction. The carbohydrates can be recovered and concentrated (up to 127 grams per liter) by extraction from GVL into an aqueous phase by addition of NaCl or liquid CO2. This strategy is well suited for catalytic upgrading to furans or fermentative upgrading to ethanol at high titers and near theoretical yield. We estimate through preliminary techno-economic modeling that the overall process could be cost-competitive for ethanol production, with biomass pretreatment followed by enzymatic hydrolysis.


Asunto(s)
Biocombustibles , Carbohidratos/síntesis química , Lactonas/química , Catálisis , Enzimas/química , Etanol/síntesis química , Fermentación , Hidrólisis , Lignina/química , Extracción en Fase Sólida , Solventes/química , Madera/química , Zea mays/química
20.
ChemSusChem ; 6(11): 2083-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939991

RESUMEN

Separation from bed, not board: Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact.


Asunto(s)
Biomasa , Carbohidratos/aislamiento & purificación , Cromatografía , Líquidos Iónicos/aislamiento & purificación , Carbohidratos/química , Hidrólisis , Líquidos Iónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...