Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277196

RESUMEN

BackgroundThe COVID-19 pandemic has had a devastating impact on global health, the magnitude of which appears to differ intercontinentally: for example, reports suggest 271,900 per million people have been infected in Europe versus 8,800 per million people in Africa. While Africa is the second largest continent by population, its reported COVID-19 cases comprise <3% of global cases. Although social, environmental, and environmental explanations have been proposed to clarify this discrepancy, systematic infection underascertainment may be equally responsible. MethodsWe seek to quantify magnitude of underascertainment in COVID-19s cumulative incidence in Africa. Using serosurveillance and postmortem surveillance, we constructed multiplicative factors estimating ratios of true infections to reported cases in African nations since March 2020. ResultsMultiplicative factors derived from serology data - in a subset of 12 nations - suggested a range of COVID-19 reporting rates, from 1 in 630 infections reported in Kenya (May 2020) to 1 in 15 infections reported in South Africa (November 2021). The largest multiplicative factor, 3,795, corresponded to Malawi (June 2020), suggesting <0.05% of infections captured. A similar set of multiplicative factors for all nations derived from postmortem data points toward the same conclusion: reported COVID-19 cases are unrepresentative of true infections, suggesting a key reason for low case burden in many African nations is significant underdetection and underreporting. ConclusionsWhile estimating COVID-19s exact burden is challenging, the multiplicative factors we present provide incidence curves reflecting likely-to-worst-case ranges of infection. Our results stress the need for expansive surveillance to allocate resources in areas experiencing severe discrepancies between reported cases, projected infections, and deaths. SummaryHere we present a range of estimates quantifying the extent of underascertainment of COVID-19 cumulative incidence in Africa. These estimates, constructed from serology and mortality data, suggest that systematic underdetection and underreporting may be contributing to the seemingly low burden of COVID-19 reported in Africa.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270823

RESUMEN

Vaccines against SARS-CoV-2 were authorized at the end of 2020 and are effective in preventing deaths; however, many persons remain unvaccinated. Using weekly publicly available CDC data of COVID-19-associated death rates by age and vaccination status from 26 US jurisdictions, we estimated the number of excess deaths that might have been averted by vaccination among unvaccinated persons [≥] 18 years old from May 30 to December 4, 2021. We subtracted the death rate in the vaccinated from rates in the unvaccinated to estimate the death rate each week that could be attributable to non-vaccination and multiplied this rate difference by the number of people in the unvaccinated group for each age group and each week, to estimate the excess mortality among the unvaccinated. Then, we extrapolated the number of deaths due to non-vaccination in the 26 jurisdictions to the whole US population using 2020 census estimates. In the 26 participating jurisdictions there were an estimated 83,400 excess deaths among the unvaccinated from May 30 to December 4, 2021. The largest number of excess deaths occurred in those 65-79 years old (n=28,900; 34.7% of total), followed by those 50-64 years old (n=25,900; 31.1%). Extrapolated to the US population we estimated approximately 135,000 excess deaths during the study period in persons [≥]18 years old. Our estimates are an underestimate of all excess deaths that have occurred since vaccine became available because our analysis period was limited to May 30 to December 4, 2021, and many excess deaths occurred before and after this period. In summary, we used retrospective data to estimate the substantial number of COVID-19-associated deaths among the unvaccinated illustrating the importance of vaccination to prevent further unnecessary mortality during this pandemic.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270414

RESUMEN

1The COVID-19 epidemic in the United States has been characterized by two stark disparities. COVID-19 burden has been unequally distributed among racial and ethnic groups and at the same time the mortality rates have been sharply higher among older age groups. These disparities have led some to suggest that inequalities could be reduced by vaccinating front-line workers before vaccinating older individuals, as older individuals in the US are disproportionately Non-Hispanic White. We compare the performance of two distribution policies, one allocating vaccines to front-line workers and another to older individuals aged 65-74-year-old. We estimate both the number of lives saved and the number of years of life saved under each of the policies, overall and in every race/ethnicity groups, in the United States and every state. We show that prioritizing COVID-19 vaccines for 65-74-year-olds saves both more lives and more years of life than allocating vaccines front-line workers in each racial/ethnic group, in the United States as a whole and in nearly every state. When evaluating fairness of vaccine allocation policies, the overall benefit to impact of each population subgroup should be considered, not only the proportion of doses that is distributed to each subgroup. Further work can identify prioritization schemes that perform better on multiple equity metrics.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22269045

RESUMEN

The Omicron (B.1.1.529) variant of SARS-CoV-2 rapidly achieved global dissemination following its emergence in southern Africa in November, 2021.1,2 Epidemiologic surveillance has revealed changes in COVID-19 case-to-hospitalization and case-to-mortality ratios following Omicron variant emergence,3-6 although interpretation of these changes presents challenges due to differential protection against Omicron or Delta (B.1.617.2) variant SARS-CoV-2 infections associated with prior vaccine-derived and naturally-acquired immunity, as well as longer-term changes in testing and healthcare practices.7 Here we report clinical outcomes among 222,688 cases with Omicron variant infections and 23,305 time-matched cases with Delta variant infections within the Kaiser Permanente Southern California healthcare system, who were followed longitudinally following positive outpatient tests between 15 December, 2021 and 17 January, 2022, when Omicron cases were almost exclusively BA.1 or its sublineages. Adjusted hazard ratios of progression to any hospital admission, symptomatic hospital admission, intensive care unit admission, mechanical ventilation, and death were 0.59 (95% confidence interval: 0.51-0.69), 0.59 (0.51-0.68), 0.50 (0.29-0.87), 0.36 (0.18-0.72), and 0.21 (0.10-0.44) respectively, for cases with Omicron versus Delta variant infections. In contrast, among 14,661 Omicron cases ascertained by outpatient testing between 3 February and 17 March, 2022, infection with the BA.2 or BA.1/BA.1.1 subvariants did not show evidence of differential risk of severe outcomes. Lower risk of severe clinical outcomes among cases with Omicron variant infection merits consideration in planning of healthcare capacity needs amid establishment of the Omicron variant as the dominant circulating SARS-CoV-2 lineage globally, and should inform the interpretation of both case- and hospital-based surveillance data.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268585

RESUMEN

Social gatherings can be an important locus of transmission for many pathogens including SARS-CoV-2. During an outbreak, restricting the size of these gatherings is one of several non-pharmaceutical interventions available to policy-makers to reduce transmission. Often these restrictions take the form of prohibitions on gatherings above a certain size. While it is generally agreed that such restrictions reduce contacts, the specific size threshold separating "allowed" from "prohibited" gatherings often does not have a clear scientific basis, which leads to dramatic differences in guidance across location and time. Building on the observation that gathering size distributions are often heavy-tailed, we develop a theoretical model of transmission during gatherings and their contribution to general disease dynamics. We find that a key, but often overlooked, determinant of the optimal threshold is the distribution of gathering sizes. Using data on pre-pandemic contact patterns from several sources as well as empirical estimates of transmission parameters for SARS-CoV-2, we apply our model to better understand the relationship between restriction threshold and reduction in cases. We find that, under reasonable transmission parameter ranges, restrictions may have to be set quite low to have any demonstrable effect on cases due to relative frequency of smaller gatherings. We compare our conceptual model with observed changes in reported contacts during lockdown in March of 2020.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262579

RESUMEN

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from infection- and vaccine-induced immunity. Much effort has been devoted to measuring these phenotypes, but predicting their impact on the course of the pandemic - especially that of immune escape - remains a challenge. Here, we use a mathematical model to simulate the dynamics of wildtype and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility easily rise to high frequency, whereas partial immune escape, on its own, often fails to do so. However, when these phenotypes are combined, enhanced transmissibility can carry the variant to high frequency, at which point partial immune escape may limit the ability of vaccination to control the epidemic. Our findings suggest that moderate immune escape poses a low risk unless combined with a substantial increase in transmissibility.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260595

RESUMEN

Recent studies have provided key information about SARS-CoV-2 vaccines efficacy and effectiveness (VE). One important question that remains is whether the protection conferred by vaccines wanes over time. However, estimates over time are subject to bias from differential depletion of susceptibles between vaccinated and unvaccinated groups. Here we examine the extent to which biases occur under different scenarios and assess whether serologic testing has the potential to correct this bias. By identifying non-vaccine antibodies, these tests could identify individuals with prior infection. We find in scenarios with high baseline VE, differential depletion of susceptibles creates minimal bias in VE estimates, suggesting that any observed declines are likely not due to spurious waning alone. However, if baseline VE is lower, the bias for leaky vaccines (that reduce individual probability of infection given contact) is larger and should be corrected by excluding individuals with past infection if the mechanism is known to be leaky. Conducting analyses both unadjusted and adjusted for past infection could give lower and upper bounds for the true VE. Studies of VE should therefore enroll individuals regardless of prior infection history but also collect information, ideally through serologic testing, on this critical variable.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259137

RESUMEN

2Vaccine allocation decisions during emerging pandemics have proven to be challenging due to competing ethical, practical, and political considerations. Complicating decision making, policy makers need to consider vaccine allocation strategies that balance needs both within and between populations. Due to limited vaccine stockpiles, vaccine doses should be allocated in locations where their impact will be maximized. Using a susceptible-exposed-infectious-recovered (SEIR) model we examine optimal vaccine allocation decisions across two populations considering the impact of population size, underlying immunity, continuous vaccine roll-out, heterogeneous population risk structure, and differences in disease transmissibility. We find that in the context of an emerging pathogen where many epidemiologic characteristics might not be known, equal vaccine allocation between populations performs optimally in most scenarios. In the specific case considering heterogeneous population risk structure, first targeting individuals at higher risk of transmission or death due to infection leads to equal resource allocation across populations.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256556

RESUMEN

Determining policies to end the SARS-CoV-2 pandemic will require an understanding of the efficacy and effectiveness (hereafter, efficacy) of vaccines. Beyond the efficacy against severe disease and symptomatic and asymptomatic infection, understanding vaccine efficacy against transmission will help model epidemic trajectory and determine appropriate control measures. Recent studies have proposed using random virologic testing in individual randomized controlled trials to improve estimation of vaccine efficacy against infection. We propose to further use the viral load measures from these tests to estimate efficacy against transmission. This estimation requires a model of the relationship between viral load and transmissibility and assumptions about the vaccine effect on transmission and the progress of the epidemic. We describe these key assumptions, potential violations of them, and solutions that can be implemented to mitigate these violations. Assessing these assumptions and implementing this random sampling, with viral load measures, will enable better estimation of the crucial measure of vaccine efficacy against transmission.

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253448

RESUMEN

ObjectiveClinical sequelae have not been well characterized during the post-acute phase of SARS-CoV-2 among adults 18 to 65 years old, and this study sought to fill that gap by evaluating excess risk and relative hazards for developing incident clinical sequelae during the post-acute phase. DesignRetrospective cohort study including three propensity-matched groups. SettingThis study merged three data sources from a large United States health plan: a large national administrative claims database, an outpatient lab testing database, and an inpatient hospital admissions database. ParticipantsIndividuals 18 to 65 years old with continuous health plan enrollment from January 2019 to date of SARS-CoV-2 diagnosis. Three comparator groups were identified and propensity-score matched to individuals infected with SARS-CoV-2: a 2020 comparator group, a historical 2019 comparator group and a historical comparator group with viral lower respiratory tract illness (vLRTI). Main outcome measuresOver 50 clinical sequelae during the post-acute phase (index date + 21 days) were ascertained using ICD-10 codes. Excess risk due to SARS-CoV-2 during the 4 months following the acute phase of illness and hazard ratios with 95% Bonferroni-corrected confidence intervals were calculated. ResultsThis study found 14% of adults [≤]65 years of age who were infected with SARS-CoV-2 (n=193113) had at least one new clinical sequelae that required medical attention during the post-acute phase of illness. When considering risk for specific sequelae attributable to SARS-Cov-2 infection during the post-acute phase, clinical outcomes including chronic respiratory failure, cardiac arrythmia, hypercoagulability, encephalopathy, peripheral neuropathy, amnesia (memory difficulty), diabetes, liver test abnormalities, myocarditis, anxiety and fatigue were significantly elevated compared to the three propensity-matched comparator groups (2020, 2019, vLRTI). Significant risk differences due to SARS-CoV-2 infection ranged from 0.02 to 2.26 per 100 people and hazard ratios ranged from 1.24 to 25.65 when compared to the 2020 comparator group. ConclusionsOur results confirm excess risk for developing clinical sequelae due to SARS-CoV-2 during the post-acute phase, including specific types of sequelae less commonly seen among other viral illnesses. Although individuals who were older, had pre-existing conditions, and were hospitalized due to COVID-19 were at greatest excess risk, younger adults ([≤]50 years), adults who did not have pre-existing conditions or adults who were not hospitalized due to COVID-19 were still at elevated risk for developing new clinical sequelae. The elevated risk for incident sequelae during the post-acute phase is relevant for healthcare planning. Summary BoxO_ST_ABSWhat is already known on this topicC_ST_ABSSmall observational studies and case reports of hospitalized patients have shown some COVID-19 survivors suffer from short- and long-term sequelae. Few studies have characterized the excess risk of clinical sequelae attributable to SARS-CoV-2 during the post-acute phase among adults [≤]65 years of age in a large generalizable sample. What this study addsThis study found 14% of individuals [≤]65 years of age who were infected with SARS-CoV-2 (n=193113) had a diagnosis of at least one new sequelae that required medical attention during the post-acute phase of illness. Elevated risk for specific clinical sequelae during the post-acute phase of illness was noted across a range of organ systems including cardiovascular, neurologic, kidney, respiratory, and mental health complications. The risk for incident sequelae increases with age, pre-existing conditions, and hospitalization for COVID-19; however, even among adults [≤] 50 years of age and individuals without pre-existing conditions or hospitalization due to COVID-19, risk for some clinical sequelae is still elevated. These results indicate where additional diagnostic follow-up, rehabilitation, and symptom management may be warranted among younger adults with milder infection.

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252415

RESUMEN

Randomized controlled trials (RCTs) have shown high efficacy of multiple vaccines against SARS-CoV-2 disease (COVID-19), and recent studies have shown the vaccines are also effective against infection. Evidence for the effect of each of these vaccines on ability to transmit the virus is also beginning to emerge. We describe an approach to estimate these vaccines effects on viral positivity, a prevalence measure which under the reasonable assumption that vaccinated individuals who become infected are no more infectious than unvaccinated individuals forms a lower bound on efficacy against transmission. Specifically, we recommend separate analysis of positive tests triggered by symptoms (usually the primary outcome) and cross-sectional prevalence of positive tests obtained regardless of symptoms. The odds ratio of carriage for vaccine vs. placebo provides an unbiased estimate of vaccine effectiveness against viral positivity, under certain assumptions, and we show through simulations that likely departures from these assumptions will only modestly bias this estimate. Applying this approach to published data from the RCT of the Moderna vaccine, we estimate that one dose of vaccine reduces the potential for transmission by at least 61%, possibly considerably more. We describe how these approaches can be translated into observational studies of vaccine effectiveness. HighlightsO_LISARS-CoV-2 vaccine trials did not directly estimate vaccine efficacy against transmission. C_LIO_LIWe describe an approach to estimate a lower bound of vaccine efficacy against transmission. C_LIO_LIWe estimate one dose of the Moderna vaccine reduces the potential for transmission by at least 61%. C_LIO_LIWe recommend separate analysis of tests triggered by symptoms vs. cross-sectional tests. C_LI

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20230094

RESUMEN

Designing public health responses to outbreaks requires close monitoring of population-level health indicators in real-time. Thus, an accurate estimation of the epidemic curve is critical. We propose an approach to reconstruct epidemic curves in near real time. We apply this approach to characterize the early SARS-CoV-2 outbreak in two Spanish regions between March and April 2020. We address two data collection problems that affected the reliability of the available real-time epidemiological data, namely, the frequent missing information documenting when a patient first experienced symptoms, and the frequent retrospective revision of historical information (including right censoring). This is done by using a novel back-calculating procedure based on imputing patients dates of symptom onset from reported cases, according to a dynamically-estimated "backward" reporting delay conditional distribution, and adjusting for right censoring using an existing package, NobBS, to estimate in real time (nowcast) cases by date of symptom onset. This process allows us to obtain an approximation of the time-varying reproduction number (Rt) in real-time. At each step, we evaluate how different assumptions affect the recovered epidemiological events and compare the proposed approach to the alternative procedure of merely using curves of case counts, by report day, to characterize the time-evolution of the outbreak. Finally, we assess how these real-time estimates compare with subsequently documented epidemiological information that is considered more reliable and complete that became available later in time. Our approach may help improve accuracy, quantify uncertainty, and evaluate frequently unstated assumptions when recovering the epidemic curves from limited data obtained from public health surveillance systems in other locations.

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249881

RESUMEN

The impact of variable infection risk by race and ethnicity on the dynamics of SARS-CoV-2 spread is largely unknown. Here, we fit structured compartmental models to seroprevalence data from New York State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk changes across groups. A simple model where interactions occur proportionally to contact rates reduced the HIT, but more realistic models of preferential mixing within groups increased the threshold toward the value observed in homogeneous populations. Across all models, the burden of infection fell disproportionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic whites. Our findings, which are meant to be illustrative and not best estimates, demonstrate how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions of SARS-CoV-2 infection.

14.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20209189

RESUMEN

To account for delays between specimen collection and report, the New York City Department of Health and Mental Hygiene used a time-correlated Bayesian nowcasting approach to support real-time COVID-19 situational awareness. We retrospectively evaluated nowcasting performance for case counts among residents diagnosed during March-May 2020, a period when the median reporting delay was 2 days. Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, metrics were similar across days the nowcasts were conducted, with Mondays having the lowest mean absolute error, of 183 cases in the context of an average daily weekday case count of 2,914. Nowcasting ensured that recent decreases in observed case counts were not overinterpreted as true declines and supported health department leadership in anticipating the magnitude and timing of hospitalizations and deaths and allocating resources geographically.

15.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20204222

RESUMEN

Virologic testing for SARS-CoV-2 has been central to the COVID-19 pandemic response, but interpreting changes in incidence and fraction of positive tests towards understanding the epidemic trajectory is confounded by changes in testing practices. Here, we show that the distribution of viral loads, in the form of Cycle thresholds (Ct), from positive surveillance samples at a single point in time can provide accurate estimation of an epidemics trajectory, subverting the need for repeated case count measurements which are frequently obscured by changes in testing capacity. We identify a relationship between the population-level cross-sectional distribution of Ct values and the growth rate of the epidemic, demonstrating how the skewness and median of detectable Ct values change purely as a mathematical epidemiologic rule without any change in individual level viral load kinetics or testing. Although at the individual level measurement variation can complicate interpretation of Ct values for clinical use, we show that population-level properties reflect underlying epidemic dynamics. In support of these theoretical findings, we observe a strong relationship between the time-varying effective reproductive number, R(t), and the distribution of Cts among positive surveillance specimens, including median and skewness, measured in Massachusetts over time. We use the observed relationships to derive a novel method that allows accurate inference of epidemic growth rate using the distribution of Ct values observed at a single cross-section in time, which, unlike estimates based on case counts, is less susceptible to biases from delays in test results and from changing testing practices. Our findings suggest that instead of discarding individual Ct values from positive specimens, incorporation of viral loads into public health data streams offers a new approach for real-time resource allocation and assessment of outbreak mitigation strategies, even where repeat incidence data is not available. Ct values or similar viral load data should be regularly reported to public health officials by testing centers and incorporated into monitoring programs.

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20190629

RESUMEN

When a vaccine for COVID-19 becomes available, limited initial supply will raise the question of how to prioritize the available doses and thus underscores the need for transparent, evidence-based strategies that relate knowledge of, and uncertainty in, disease transmission, risk, vaccine efficacy, and existing population immunity. Here, we employ a model-informed approach to vaccine prioritization that evaluates the impact of prioritization strategies on cumulative incidence and mortality and accounts for population factors such as age, contact structure, and seroprevalence, and vaccine factors including imperfect and age-varying efficacy. This framework can be used to evaluate and compare existing strategies, and it can also be used to derive an optimal prioritization strategy to minimize mortality or incidence. We find that a transmission-blocking vaccine should be prioritized to adults ages 20-49y to minimize cumulative incidence and to adults over 60y to minimize mortality. Direct vaccination of adults over 60y minimizes mortality for vaccines that do not block transmission. We also estimate the potential benefit of using individual-level serological tests to redirect doses to only seronegative individuals, improving the marginal impact of each dose. We argue that this serology-informed vaccination approach may improve the efficiency of vaccination efforts while partially addressing existing inequities in COVID-19 burden and impact.

17.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20157362

RESUMEN

BackgroundThere is limited information on the effect of age on the transmission of SARS-CoV-2 infection in different settings, including primary, secondary and high schools, households, and the whole community. We undertook a literature review of published studies/data on detection of SARS-CoV-2 infection in contacts of COVID-19 cases, as well as serological studies, and studies of infections in the school setting to examine those issues. ResultsOur literature review presents evidence for significantly lower susceptibility to infection for children aged under 10 years compared to adults given the same exposure, for elevated susceptibility to infection in adults aged over 60y compared to younger/middle aged adults, and for the risk of SARS-CoV-2 infection associated with sleeping close to an infected individual. Published serological studies also suggest that younger adults (particularly those aged under 35y) often have high cumulative rates of SARS-CoV-2 infection in the community. Additionally, there is some evidence of robust spread of SARS-CoV-2 in secondary/high schools, and there appears to be more limited spread in primary schools. Some countries with relatively large class sizes in primary schools (e.g.Chile and Israel) reported sizeable outbreaks in some of those schools, though routes of transmission of infection to both students and staff are not clear from current reports. ConclusionsOpening secondary/high schools is likely to contribute to the spread of SARS-CoV-2, and, if implemented, it should require both lower levels of community transmission and greater safeguards to reduce transmission. Compared to secondary/high schools, opening primary schools and daycare facilities may have a more limited effect on the spread of SARS-CoV-2 in the community, particularly under smaller class sizes and in the presence of mitigation measures. Efforts to avoid crowding in the classroom and other mitigation measures should be implemented, to the extent possible, when opening primary schools. Efforts should be undertaken to diminish the mixing in younger adults to mitigate the spread of the epidemic in the whole community.

18.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20143560

RESUMEN

BackgroundThe first months of the SARS-CoV-2 epidemic in Spain resulted in high incidence and mortality. A national sero-epidemiological survey suggests higher cumulative incidence of infection in older individuals than in younger individuals. However, little is known about the epidemic dynamics in different age groups, including the relative effect of the lockdown measures introduced on March 15, and strengthened on March 30 to April 14, 2020 when only essential workers continued to work. MethodsWe used data from the National Epidemiological Surveillance Network (RENAVE in Spanish) on the daily number of reported COVID-19 cases (by date of symptom onset) in eleven 5-year age groups: 15-19y through 65-69y. For each age group g, we computed the proportion E(g) of individuals in age group g among all reported cases aged 15-69y during the pre-lockdown period (March 1-10, 2020) and the corresponding proportion L(g) during two lockdown periods (March 25-April 3 and April 8-17, 2020). For each lockdown period, we computed the proportion ratios PR(g)= L(g)/E(g). For each pair of age groups g1,g2, PR(g1)>PR(g2) implies a relative increase in the incidence of detected SARS-CoV-2 infection in the age group g1 compared with g2 for the later vs. early period. ResultsFor the first lockdown period, the highest PR values were in age groups 50-54y (PR=1.21; 95% CI: 1.12,1.30) and 55-59y (PR=1.19; 1.11,1.27). For the second lockdown period, the highest PR values were in age groups 15-19y (PR=1.26; 0.95,1.68) and 50-54y (PR=1.20; 1.09,1.31). ConclusionsOur results suggest that different outbreak control measures led to different changes in the relative incidence by age group. During the first lockdown period, when non-essential work was allowed, individuals aged 40-64y, particularly those aged 50-59y presented with higher COVID-19 relative incidence compared to pre-lockdown period, while younger adults/older adolescents (together with persons aged 50-59y) had increased relative incidence during the later, strengthened lockdown. The role of different age groups during the epidemic should be considered when implementing future mitigation efforts.

19.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20134858

RESUMEN

Estimation of the effective reproductive number, Rt, is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to spread. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation. Author summaryThe effective reproductive number, Rt, is a key epidemic parameter used to assess whether an epidemic is growing, shrinking or holding steady. Rt estimates can be used as a near real-time indicator of epidemic growth or to assess the effectiveness of interventions. But due to delays between infection and case observation, estimating Rt in near real-time, and correctly inferring the timing of changes in Rt is challenging. Here, we provide an overview of challenges and best practices for accurate, timely Rt estimation.

20.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20088765

RESUMEN

The extent and duration of immunity following SARS-CoV-2 infection are critical outstanding questions about the epidemiology of this novel virus, and studies are needed to evaluate the effects of serostatus on reinfection. Understanding the potential sources of bias and methods to alleviate biases in these studies is important for informing their design and analysis. Confounding by individual-level risk factors in observational studies like these is relatively well appreciated. Here, we show how geographic structure and the underlying, natural dynamics of epidemics can also induce noncausal associations. We take the approach of simulating serologic studies in the context of an uncontrolled or a controlled epidemic, under different assumptions about whether prior infection does or does not protect an individual against subsequent infection, and using various designs and analytic approaches to analyze the simulated data. We find that in studies assessing the efficacy of serostatus on future infection, comparing seropositive individuals to seronegative individuals with similar time-dependent patterns of exposure to infection, by stratifying or matching on geographic location and time of enrollment, is essential to prevent bias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...