Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Cell Mol Med ; 23(12): 8442-8452, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638346

RESUMEN

Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant-negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)-terminus, from poly-glycine to either a poly-arginine or -alanine tail. Previous studies on the type of C-terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C-termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C-terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine-rich C-terminus. However, this was not observed with K10 featuring an alanine-rich C-terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild-type and truncated forms of K10. This study demonstrates that, of the various 3' frameshift variants of KRT10, exclusively arginine-rich C-termini lead to nuclear localization of K10.


Asunto(s)
Arginina/genética , Núcleo Celular/genética , Eritrodermia Ictiosiforme Congénita/genética , Queratina-10/genética , Mutación , Transporte Activo de Núcleo Celular/genética , Alanina/genética , Alanina/metabolismo , Arginina/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Exones/genética , Mutación del Sistema de Lectura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Eritrodermia Ictiosiforme Congénita/metabolismo , Eritrodermia Ictiosiforme Congénita/patología , Queratina-10/química , Queratina-10/metabolismo , Queratinocitos/metabolismo , Microscopía Confocal
2.
J Invest Dermatol ; 139(8): 1699-1710.e6, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30998984

RESUMEN

Epidermolytic ichthyosis is a skin fragility disorder caused by dominant-negative mutations in KRT1 or KRT10. No definitive restorative therapies exist that target these genetic faults. Gene editing can be used to efficiently introduce frameshift mutations to inactivate mutant genes. This can be applied to counter the effect of dominantly inherited diseases such as epidermolytic ichthyosis. In this study, we used transcription activator-like effector nuclease technology, to disrupt disease-causing mutant KRT10 alleles in an ex vivo cellular approach, with the intent of developing a therapy for patients with epidermolytic ichthyosis. A transcription activator-like effector nuclease was designed to specifically target a region of KRT10, upstream of a premature termination codon known to induce a genetic knockout. This proved highly efficient at gene disruption in a patient-derived keratinocyte cell line. In addition, analysis for off-target effects indicated no promiscuous gene editing-mediated disruption. Reversion of the keratin intermediate filament fragility phenotype associated with epidermolytic ichthyosis was observed by the immunofluorescence analysis of correctly gene-edited single-cell clones. This was in concurrence with immunofluorescence and ultrastructure analysis of murine xenograft models. The efficiency of this approach was subsequently confirmed in primary patient keratinocytes. Our data demonstrate the feasibility of an ex vivo gene-editing therapy for more than 95.6% of dominant KRT10 mutations.


Asunto(s)
Edición Génica/métodos , Hiperqueratosis Epidermolítica/terapia , Filamentos Intermedios/metabolismo , Queratina-10/genética , Piel/patología , Alelos , Animales , Biopsia , Línea Celular , Modelos Animales de Enfermedad , Exones/genética , Estudios de Factibilidad , Femenino , Terapia Genética/métodos , Humanos , Hiperqueratosis Epidermolítica/genética , Hiperqueratosis Epidermolítica/patología , Queratina-10/metabolismo , Queratinocitos/patología , Queratinocitos/trasplante , Masculino , Ratones , Mutación , Cultivo Primario de Células , Estabilidad Proteica , Piel/citología , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
3.
Exp Physiol ; 103(4): 449-455, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28271571

RESUMEN

NEW FINDINGS: What is the topic of this review? This review concerns current gene editing strategies for blistering skin diseases with respect to individual genetic constellations and distinct conditions. What advances does it highlight? Specificity and safety dominate the discussion of gene editing applications for gene therapy, where a number of tools are implemented. Recent developments in this rapidly progressing field pose further questions regarding which tool is best suited for each particular use. The current treatment of inherited blistering skin diseases, such as epidermolysis bullosa (EB), is largely restricted to wound care and pain management. More effective therapeutic strategies are urgently required, and targeting the genetic basis of these severe diseases is now within reach. Here, we describe current gene editing tools and their potential to correct gene function in monogenetic blistering skin diseases. We present the features of the most frequently used gene editing techniques, transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), determining their preferential application for specific genetic conditions, including the type of mutational inheritance, the targeting site within the gene or the possibility to target the mutation specifically. Both tools have traits beneficial in specific situations. Promising developments in the field engender gene editing as a potentially powerful therapeutic option for future clinical applications.


Asunto(s)
Enfermedades de la Piel/genética , Enfermedades de la Piel/terapia , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Terapia Genética/métodos , Humanos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...