Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; : 101582, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38781959

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.

2.
Pediatr Blood Cancer ; 71(7): e31029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679845

RESUMEN

BACKGROUND: Previous studies have shown that neutrophil-to-lymphocyte (NLR) ratio at diagnosis and early lymphocytes recovery on doxorubicin-based chemotherapy, may impact the outcome in patients with osteosarcoma (OST). This study aimed to evaluate the prognostic value of hemogram parameters in patients with OST treated with high-dose methotrexate and etoposide/ifosfamide (M-EI) chemotherapy. MATERIALS AND METHODS: We retrospectively analyzed the prognostic value of various hemogram parameters at diagnosis and during therapy in a large consecutive cohort of patients with OST included in the French OS2006 trial and treated with M-EI chemotherapy. RESULTS: A total of 164 patients were analyzed. The median age was 14.7 years (interquartile range [IQR]: 11.7-17). Median follow-up was 5.6 years (IQR: 3.3-7.7 years). Three-year event-free survival (EFS) and overall survival (OS) were 71.5% (95% confidence interval [CI]: 64%-78%) and 86.4% (95% CI: 80%-91%), respectively. In univariate analysis, blood count parameters at diagnosis and early lymphocyte recovery at Day 14 were not found prognostic of survival outcomes. By contrast, an increase of NLR ratio at Day 1 of the first EI chemotherapy (NLR-W4) was associated with reduced OS in univariate (p = .0044) and multivariate analysis (hazards ratio [HR] = 1.3, 95% CI: 1.1-1.5; p = .002), although not with EFS. After adjustment on histological response and metastatic status, an increase of the ratio NLR-W4 of 1 was associated with an increased risk of death of 30%. CONCLUSIONS: We identified NLR-W4 as a potential early biomarker for survival in patients with OST treated with M-EI chemotherapy. Further studies are required to confirm the prognostic value of NLR and better identify immune mechanisms involved in disease surveillance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Óseas , Etopósido , Metotrexato , Osteosarcoma , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/mortalidad , Osteosarcoma/patología , Osteosarcoma/sangre , Femenino , Masculino , Adolescente , Estudios Retrospectivos , Niño , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/mortalidad , Neoplasias Óseas/patología , Neoplasias Óseas/sangre , Etopósido/administración & dosificación , Etopósido/uso terapéutico , Metotrexato/administración & dosificación , Metotrexato/uso terapéutico , Tasa de Supervivencia , Neutrófilos/patología , Estudios de Seguimiento , Linfocitos/patología , Ifosfamida/administración & dosificación , Francia/epidemiología
3.
Eur J Med Genet ; 69: 104941, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677541

RESUMEN

High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.

4.
Commun Biol ; 6(1): 949, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723198

RESUMEN

Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.


Asunto(s)
Leucemia , Neoplasias , Animales , Niño , Humanos , Ratones , Bancos de Muestras Biológicas , Modelos Animales de Enfermedad , Xenoinjertos , Neoplasias/genética , Medicina de Precisión , Ensayos Clínicos como Asunto
5.
Cancer Treat Rev ; 120: 102625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37738712

RESUMEN

BACKGROUND/OBJECTIVE: To analyze changes in recurrent/refractory osteosarcoma phase II trials over time to inform future trials in this population with poor prognosis. METHODS: A systematic review of trials registered on trial registries between 01/01/2017-14/02/2022. Comparison of 98 trials identified between 2003 and 2016. Publication search/analysis for both periods, last update on 01/12/2022. RESULTS: Between 2017 and 2022, 71 phase-II trials met our selection criteria (19 osteosarcoma-specific trials, 14 solid tumor trials with and 38 trials without an osteosarcoma-specific stratum). The trial number increased over time: 13.9 versus 7 trials/year (p = 0.06). Monotherapy remained the predominant treatment (62% vs. 62%, p = 1). Targeted therapies were increasingly evaluated (66% vs. 41%, P = 0.001). Heterogeneity persisted in the trial characteristics. The inclusion criteria were measurable disease (75%), evaluable disease (14%), and surgical remission (11%). 82% of the trials included pediatric or adolescent patients. Biomarker-driven trials accounted for 25% of the total trials. The survival endpoint use (rather than response) slightly increased (40% versus 31%), but the study H1/H0 hypotheses remained heterogeneous. Single-arm designs predominated over multiarm trials (n = 7). Available efficacy data on 1361 osteosarcoma patients in 58 trials remained disappointing, even though 21% of these trials were considered positive, predominantly those evaluating multi-targeted kinase inhibitors. CONCLUSION: Despite observed changes in trial design and an increased number of trials investigating new therapies, high heterogeneity remained with respect to patient selection, study design, primary endpoints, and statistical hypotheses in recently registered phase II trials for osteosarcoma. Continued optimization of trial design informed by a deeper biological understanding should strengthen the development of new therapies.

6.
Front Oncol ; 13: 1166063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377921

RESUMEN

Osteosarcoma is a rare bone cancer in adolescents and young adults with a dismal prognosis because of metastatic disease and chemoresistance. Despite multiple clinical trials, no improvement in outcome has occurred in decades. There is an urgent need to better understand resistant and metastatic disease and to generate in vivo models from relapsed tumors. We developed eight new patient-derived xenograft (PDX) subcutaneous and orthotopic/paratibial models derived from patients with recurrent osteosarcoma and compared the genetic and transcriptomic landscapes of the disease progression at diagnosis and relapse with the matching PDX. Whole exome sequencing showed that driver and copy-number alterations are conserved from diagnosis to relapse, with the emergence of somatic alterations of genes mostly involved in DNA repair, cell cycle checkpoints, and chromosome organization. All PDX patients conserve most of the genetic alterations identified at relapse. At the transcriptomic level, tumor cells maintain their ossification, chondrocytic, and trans-differentiation programs during progression and implantation in PDX models, as identified at the radiological and histological levels. A more complex phenotype, like the interaction with immune cells and osteoclasts or cancer testis antigen expression, seemed conserved and was hardly identifiable by histology. Despite NSG mouse immunodeficiency, four of the PDX models partially reconstructed the vascular and immune-microenvironment observed in patients, among which the macrophagic TREM2/TYROBP axis expression, recently linked to immunosuppression. Our multimodal analysis of osteosarcoma progression and PDX models is a valuable resource to understand resistance and metastatic spread mechanisms, as well as for the exploration of novel therapeutic strategies for advanced osteosarcoma.

8.
Front Immunol ; 14: 1265469, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318504

RESUMEN

The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.


Asunto(s)
Glioma , Sarcoma de Ewing , Adolescente , Niño , Humanos , Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos HLA/genética , Antígenos HLA-B/genética , Sarcoma de Ewing/genética , Animales , Adulto Joven
9.
Front Cell Dev Biol ; 10: 948097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072341

RESUMEN

Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.

10.
Cancer Discov ; 12(5): 1266-1281, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35292802

RESUMEN

ABSTRACT: MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE: MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Carcinoma , Ácidos Nucleicos Libres de Células , Adolescente , Biomarcadores de Tumor/genética , Niño , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Medicina de Precisión/métodos , Estudios Prospectivos
11.
Cancer Res ; 82(6): 974-985, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35078815

RESUMEN

The outcomes of adolescents/young adults with osteosarcoma have not improved in decades. The chaotic karyotype of this rare tumor has precluded the identification of prognostic biomarkers and patient stratification. We reasoned that transcriptomic studies should overcome this genetic complexity. RNA sequencing (RNA-seq) of 79 osteosarcoma diagnostic biopsies identified stable independent components that recapitulate the tumor and microenvironment cell composition. Unsupervised classification of the independent components stratified this cohort into favorable (G1) and unfavorable (G2) prognostic tumors in terms of overall survival. Multivariate survival analysis ranked this stratification as the most influential variable. Functional characterization associated G1 tumors with innate immunity and G2 tumors with angiogenic, osteoclastic, and adipogenic activities as well as PPARγ pathway upregulation. A focused gene signature that predicted G1/G2 tumors from RNA-seq data was developed and validated within an independent cohort of 82 osteosarcomas. This signature was further validated with a custom NanoString panel in 96 additional osteosarcomas. This study thus proposes new biomarkers to detect high-risk patients and new therapeutic options for osteosarcoma. SIGNIFICANCE: These findings indicate that the osteosarcoma microenvironment composition is a major feature to identify hard-to-treat patient tumors at diagnosis and define the biological pathways and potential actionable targets associated with these tumors.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Biomarcadores , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Niño , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Microambiente Tumoral/genética , Adulto Joven
12.
Eur J Cancer ; 150: 53-62, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33892407

RESUMEN

PURPOSE: AcSé-ESMART is a European multicentre, proof-of-concept multiarm phase I/II platform trial in paediatric patients with relapsed/refractory cancer. Arm G assessed the activity and safety of nivolumab in combination with metronomic cyclophosphamide +/- irradiation. EXPERIMENTAL DESIGN: Following a Phase II Simon two-stage design, nivolumab was administered intravenously at 3 mg/kg every 2 weeks of a 28-day cycle, oral cyclophosphamide at 25 mg/m2 twice a day, 1 week on/1 week off. The primary endpoint was objective response rate. Irradiation/radioablation of primary tumour or metastasis could be administered as per physician's choice. Biomarker evaluation was performed by tumour immunohistochemistry, whole exome and RNA sequencing, and immunophenotyping of peripheral blood by flow cytometry. RESULTS: Thirteen patients were treated with a median age of 15 years (range: 5.5-19.4). The main histologies were high-grade glioma, neuroblastoma, and desmoplastic small round cell tumour (DSRCT). The safety profile was similar to those of single-agent nivolumab, albeit haematologic toxicity, mainly lymphocytopenia, was commonly reported with the addition of cyclophosphamide +/- irradiation. Two patients with DSRCT and ependymoma presented unconfirmed partial response and prolonged disease stabilisation. Low mutational load with modest intratumour CD3+ T-cell infiltration and immunosuppressive tumour microenvironment were observed in the tumour samples. Under combined treatment, no positive modulation of circulating T cells was displayed, while derived neutrophil-to-lymphocyte ratio increased. CONCLUSIONS: Nivolumab in combination with cyclophosphamide was well tolerated but had limited activity in this paediatric setting. Metronomic cyclophosphamide did not modulate systemic immune response that could compensate limited T-cell infiltration and the immunosuppressive tumour microenvironment. CLINICALTRIALS. GOV IDENTIFIER: NCT2813135.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/análisis , Ciclofosfamida/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Nivolumab/administración & dosificación , Macrófagos Asociados a Tumores/efectos de los fármacos , Administración Metronómica , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno B7-H1/análisis , Biomarcadores de Tumor/genética , Niño , Preescolar , Ciclofosfamida/efectos adversos , Europa (Continente) , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Mutación , Neoplasias/genética , Neoplasias/inmunología , Nivolumab/efectos adversos , Prueba de Estudio Conceptual , Factores de Tiempo , Resultado del Tratamiento , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Adulto Joven
14.
Plant J ; 103(5): 1796-1809, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506562

RESUMEN

Arabidopsis encodes 10 ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22 nucleotide (nt) long small RNAs (sRNAs) to mediate post-transcriptional gene silencing (PTGS) or 24 nt sRNAs to promote RNA-directed DNA methylation. Using full-locus constructs, we characterized the expression, biochemical properties and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 downregulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5' adenosine bias, but unlike Arabidopsis AGO2, it binds 24 nt sRNAs most efficiently. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci of origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas Argonautas/fisiología , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Flores/fisiología , Duplicación de Gen
15.
Fac Rev ; 9: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33659950

RESUMEN

Osteosarcoma is the most common bone cancer in adolescents and young adults, but it is a rare cancer with no improvement in patient survival in the last four decades. The main problem of this bone tumor is its evolution toward lung metastatic disease, despite the current treatment strategy (chemotherapy and surgery). To further improve survival, there is a strong need for new therapies that control osteosarcoma cells with metastatic potential and their favoring tumor microenvironment (ME) from the diagnosis. However, the complexity and heterogeneity of those tumor cell genomic/epigenetic and biology, the diversity of tumor ME where it develops, the sparsity of appropriate preclinical models, and the heterogeneity of therapeutic trials have rendered the task difficult. No tumor- or ME-targeted drugs are routinely available in front-line treatment. This article presents up-to-date information from preclinical and clinical studies that were recently published or presented in recent meetings which we hope might help change the osteosarcoma treatment landscape and patient survival in the near future.

16.
Cancers (Basel) ; 11(7)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319571

RESUMEN

Osteosarcoma, the most common bone malignancy with a peak incidence at adolescence, had no survival improvement since decades. Persistent problems are chemo-resistance and metastatic spread. We developed in-vitro osteosarcoma models resistant to chemotherapy and in-vivo bioluminescent orthotopic cell-derived-xenografts (CDX). Continuous increasing drug concentration cultures in-vitro resulted in five methotrexate (MTX)-resistant and one doxorubicin (DOXO)-resistant cell lines. Resistance persisted after drug removal except for MG-63. Different resistance mechanisms were identified, affecting drug transport and action mechanisms specific to methotrexate (RFC/SCL19A1 decrease, DHFR up-regulation) for MTX-resistant lines, or a multi-drug phenomenon (PgP up-regulation) for HOS-R/DOXO. Differential analysis of copy number abnormalities (aCGH) and gene expression (RNAseq) revealed changes of several chromosomic regions translated at transcriptomic level depending on drug and cell line, as well as different pathways implicated in invasive and metastatic potential (e.g., Fas, Metalloproteinases) and immunity (enrichment in HLA cluster genes in 6p21.3) in HOS-R/DOXO. Resistant-CDX models (HOS-R/MTX, HOS-R/DOXO and Saos-2-B-R/MTX) injected intratibially into NSG mice behaved as their parental counterpart at primary tumor site; however, they exhibited a slower growth rate and lower metastatic spread, although they retained resistance and CGH main characteristics without drug pressure. These models represent valuable tools to explore resistance mechanisms and new therapies in osteosarcoma.

17.
RNA ; 25(9): 1098-1117, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31138671

RESUMEN

In a reductionist perspective, plant silencing small (s)RNAs are often classified as mediating nuclear transcriptional gene silencing (TGS) or cytosolic posttranscriptional gene silencing (PTGS). Among the PTGS diagnostics is the association of AGOs and their sRNA cargos with the translation apparatus. In Arabidopsis, this is observed for AGO1 loaded with micro(mi)RNAs and, accordingly, translational-repression (TR) is one layer of plant miRNA action. Using AGO1:miRNA-mediated TR as a paradigm, we explored, with two unrelated polysome-isolation methods, which, among the ten Arabidopsis AGOs and numerous sRNA classes, interact with translation. We found that representatives of all three AGO-clades associate with polysomes, including the TGS-effector AGO4 and stereotypical 24-nt sRNAs that normally mediate TGS of transposons/repeats. Strikingly, approximately half of these annotated 24-nt siRNAs displayed unique matches in coding regions/introns of genes, and in pseudogenes, but not in transposons/repeats commonly found in their vicinity. Protein-coding gene-derived 24-nt sRNAs correlate with gene-body methylation. Those derived from pseudogenes belong to two main clusters defined by their parental-gene expression patterns, and are vastly enriched in AGO5, itself found on polysomes. Based on their tight expression pattern in developing and mature siliques, their biogenesis, and genomic/epigenomic features of their loci-of-origin, we discuss potential roles for these hitherto unknown polysome-enriched, pseudogene-derived siRNAs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Genes de Plantas/genética , Polirribosomas/genética , Seudogenes/genética , ARN Interferente Pequeño/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , MicroARNs/genética , Interferencia de ARN/fisiología , ARN de Planta/genética
18.
Glia ; 66(12): 2632-2644, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30295958

RESUMEN

Proper function of the nervous system depends on myelination. In peripheral nerves, Schwann cells (SCs) myelinate axons and the miRNA biogenesis pathway is required for developmental myelination and myelin maintenance. However, regulatory roles of this pathway at different stages of myelination are only partially understood. We addressed the requirement of the core miRNA biogenesis pathway components Dgcr8, Drosha, and Dicer in developing and adult SCs using mouse mutants with a comparative genetics and transcriptomics approach. We found that the microprocessor components Dgcr8 and Drosha are crucial for axonal radial sorting and to establish correct SC numbers upon myelination. Transcriptome analyses revealed a requirement of the microprocessor to prevent aberrantly increased expression of injury-response genes. Those genes are predicted targets of abundant miRNAs in sciatic nerves (SNs) during developmental myelination. In agreement, Dgcr8 and Dicer are required for proper maintenance of the myelinated SC state, where abundant miRNAs in adult SNs are predicted to target injury-response genes. We conclude that the miRNA biogenesis pathway in SCs is crucial for preventing inappropriate activity of injury-response genes in developing and adult SCs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/metabolismo , Células de Schwann/patología , Neuropatía Ciática/patología , Neuropatía Ciática/prevención & control , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Conexinas/genética , Conexinas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Microscopía Electrónica , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Factores de Transcripción/metabolismo , Proteína beta1 de Unión Comunicante
19.
Nucleic Acids Res ; 45(9): 5539-5554, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28334969

RESUMEN

In plants, tasiRNAs form a class of endogenous secondary siRNAs produced through the action of RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) upon microRNA-mediated cleavage of non-coding TAS RNAs. In Arabidopsis thaliana, TAS1, TAS2 and TAS4 tasiRNA production proceeds via a single cleavage event mediated by 22nt-long or/and asymmetric miRNAs in an ARGONAUTE-1 (AGO1)-dependent manner. By contrast, tasiRNA production from TAS3 seems to follow the so-called 'two-hit' process, where dual targeting of TAS3, specifically mediated by the 21nt-long, symmetric miR390, initiates AGO7-dependent tasiRNA production. Interestingly, features for TAS3 tasiRNA production differ in other plant species and we show here that such features also enable TAS3 tasiRNA biogenesis in Arabidopsis, and that a single miR390 targeting event is, in fact, sufficient for this process, suggesting that the 'one-hit' model underpins all the necessary rudiments of secondary siRNA biogenesis from plant TAS transcripts. Further results suggest that the two-hit configuration likely enhances the fidelity of tasiRNA production and, hence, the accuracy of downstream gene regulation. Finally, we show that a 'non-cleavable one-hit' process allows tasiRNA production from both TAS1 and TAS3 transcripts, indicating that RDR6 recruitment does not require miRNA cleavage, nor does the recruitment, as we further show, of SUPRRESSOR-OF-GENE-SILENCING-3, indispensable for tasiRNA generation.


Asunto(s)
Arabidopsis/genética , MicroARNs/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Secuencia de Bases , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Transgenes
20.
RNA ; 22(10): 1560-73, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27495318

RESUMEN

The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.


Asunto(s)
Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Bacteriano/genética , ARN Interferente Pequeño/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostasis , Operón , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...