Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(3): 1623-1632, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194503

RESUMEN

Biofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal. Quaternary ammonium amphiphiles can form vesicular structures termed "quatsomes" in the presence of cholesterol. In addition to their intrinsic antimicrobial properties, quatsomes can also be used for the delivery of other types of antibiotics or biomarkers. In this study, quatsomes were prepared from binary mixtures of cholesterol and mono- or dialkyl-quaternary ammonium compounds; then, the integrity and stability of their vesicular structure were assessed and related to monomer chain number and chain length. The quatsomes were used to treat Pseudomonas aeruginosa biofilms, showing effective antibiofilm abilities comparable to those of their monomers. A systematic liquid chromatography-mass spectrometry method for quantifying quatsome vesicle components was also developed and used to establish the significance of cholesterol in the quatsome self-assembly processes.


Asunto(s)
Antiinfecciosos , Pseudomonas aeruginosa , Compuestos de Amonio Cuaternario , Biopelículas , Antibacterianos/farmacología , Colesterol , Pruebas de Sensibilidad Microbiana
2.
Front Microbiol ; 14: 1187142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250052

RESUMEN

Viruses are responsible for most enteric foodborne illnesses worldwide. The foods most frequently involved are fresh fruits and vegetables since they undergo little or no processing. Washing with a chemical disinfectant is a convenient way of inactivating viruses on foods. Peracetic acid, widely used as a disinfectant in the food industry, has the drawback of leaving a strong odor and is ineffective alone against some foodborne viruses. In this study, four disinfectants, namely per levulinic acid with or without sodium dodecyl sulfate, peracetic acid and a commercial peracetic acid-based disinfectant were tested on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and hepatitis E virus (HEV). Disinfectant concentrations were 50, 80, 250, 500, and 1000 mg l-1 and contact times were 0.5, 1, 5, and 10 min. Under these conditions, per levulinic acid supplemented with 1% SDS reduced MNV-1 infectious titer by 3 log cycles vs. 2.24 log cycles by peracetic acid within 0.5 min. On stainless steel at 80 ppm, only peracetic acid produced 3-log reductions within 0.5 min. None of these peroxyacids was able to reduce infectious titers of HAV or HEV by even 2 log cycles at any concentration or time-tested. This study will guide the development of new chemical formulas that will be more effective against major foodborne viruses and will have less impact on food quality and the environment.

3.
Metallomics ; 14(7)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35731587

RESUMEN

Severe acute respiratory syndrome (SARS) is a viral respiratory infection caused by human coronaviruses that include SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Although their primary mode of transmission is through contaminated respiratory droplets from infected carriers, the deposition of expelled virus particles onto surfaces and fomites could contribute to viral transmission. Here, we use replication-deficient murine leukemia virus (MLV) pseudoviral particles expressing SARS-CoV-2, SARS-CoV, or MERS-CoV Spike (S) protein on their surface. These surrogates of native coronavirus counterparts serve as a model to analyze the S-mediated entry into target cells. Carboxymethyl cellulose (CMC) nanofibers that are combined with copper (Cu) exhibit strong antimicrobial properties. S-pseudovirions that are exposed to CMC-Cu nanoparticles (30 s) display a dramatic reduction in their ability to infect target Vero E6 cells, with ∼97% less infectivity as compared to untreated pseudovirions. In contrast, addition of the Cu chelator tetrathiomolybdate protects S-pseudovirions from CMC-Cu-mediated inactivation. When S-pseudovirions were treated with a hydrogen peroxide-based disinfectant (denoted SaberTM) used at 1:250 dilution, their infectivity was dramatically reduced by ∼98%. However, the combined use of SaberTM and CMC-Cu is the most effective approach to restrict infectivity of SARS-CoV-2-S, SARS-CoV-S, and MERS-CoV-S pseudovirions in Vero E6 cell assays. Together, these results show that cellulosic Cu nanoparticles enhance the effectiveness of diluted SaberTM sanitizer, setting up an improved strategy to lower the risk of surface- and fomite-mediated transmission of enveloped respiratory viruses.


Asunto(s)
COVID-19 , Desinfectantes , Coronavirus del Síndrome Respiratorio de Oriente Medio , Nanopartículas , Cobre/farmacología , Desinfectantes/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
J Phys Chem A ; 119(10): 1996-2005, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25671500

RESUMEN

Heterogeneous nitrate photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole-forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproduct yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air-ice interface within the snowpack suppresses the diffusive uptake kinetics, thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied, providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ∼3-fold enhancement in photolysis rates to be correlated with the nitrates' distorted intramolecular geometry, thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than that in the bulk. A simple 1D kinetic model suggests (1) that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO2 emissions from a 5(8) nm thick photochemically active interfacial layer by 30(60)%, and (2) that 25(40)% of the NO2 photochemical emissions to the snowpack interstitial air are released from the topmost molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface.

5.
J Phys Chem A ; 116(49): 12112-22, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23130955

RESUMEN

A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K.


Asunto(s)
Hielo , Ácido Nítrico/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termodinámica
6.
J Phys Chem A ; 115(23): 6002-14, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21506593

RESUMEN

Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.

7.
J Chem Phys ; 131(12): 124517, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19791904

RESUMEN

Adsorption of hydrogen fluoride (HF) onto amorphous solid water films at 50 K is reported to yield a strong absorbance continuum in their reflection-absorption infrared spectra (RAIRS). This and other complex features observed in the RAIRS spectra of stratified binary composite HF:H(2)O nanoscopic films deposited onto Pt(111) are interpreted quantitatively using a classical optics model. Comparison with experimental data allows us to determine that the absorbance continuum is due to absorption within the film (as opposed to trivial optical effects) and that the extent of intermixing and uptake is mostly limited to the first few molecular layers. Furthermore, extensive isotope scrambling is demonstrated by the observation of similar Zundel continua upon codeposition of neat HF, or DF, and H(2)O vapors onto Pt(111) at 50 K. These observations are consistent with those expected from extensive ionic dissociation of HF upon dissolution within, and adsorption onto, ASW at 50 K.

8.
Phys Chem Chem Phys ; 10(32): 4785-92, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18688521

RESUMEN

A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

9.
J Am Chem Soc ; 130(18): 5901-7, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18386892

RESUMEN

The existence of a broad, mid-infrared absorption ranging from 1000 to 3000 cm(-1) is usually interpreted as a signature for the existence of protonated water networks. Herein, we use cryogenic mixtures of water and hydrogen fluoride (HF) and show experimental and computational evidence that similarly wide absorptions can be generated by a broad distribution of proton-shared and ion pair complexes. In the present case, we demonstrate that the broadening is mainly inhomogeneous, reflecting the fact that the topology of the first solvation shell determines the local degree of ionization and the shared-proton asymmetric stretching frequency within H2O x HF complexes. The extreme sensitivity of the proton transfer potential energy hypersurface to local hydrogen bonding topologies modulates its vibrational frequency from 2800 down to approximately 1300 cm(-1), the latter value being characteristic of solvation geometries that yield similar condensed-phase proton affinities for H2O and fluoride. By linking the local degree of ionization to the solvation pattern, we are able to propose a mechanism of ionization for HF in aqueous solutions and to explain some of their unusual properties at large concentrations. However, an important conclusion of broad scientific interest is our prediction that spectral signatures that are normally attributed to protonated water networks could also reveal the presence of strong hydrogen bonds between un-ionized acids and water molecules, with important consequences to spectroscopic investigations of biologically relevant proton channels and pumps.


Asunto(s)
Ácido Fluorhídrico/química , Espectrofotometría Infrarroja/métodos , Agua/química , Enlace de Hidrógeno , Protones
10.
J Phys Chem A ; 110(41): 11654-64, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17034159

RESUMEN

Quantitative analyses of the isothermal desorption kinetics from methanol-doped H2O films on Pt(111) reveal that transport kinetics for CH3OH in polycrystalline ice are much slower than previously reported. They also indicate that MeOH displays first-order desorption kinetics with respect to its instantaneous surface concentration below 0.1 mole fraction in ice. These observations allow isothermal desorption rate measurements to be interpreted in terms of a depth profiling analysis providing one-dimensional concentration depth profiles from methanol-doped polycrystalline ice films. Using a straightforward approach to inhibit ice sublimation, transport properties are extracted from the evolution of concentration depth profiles obtained after thermal annealing of binary ice films at high temperature. Heterodiffusion coefficients for methanol in polycrystalline (cubic) ice Ic films are reported for temperatures between 145 and 195 K and for concentrations below 10(-3) mole fraction. Finally, diffusion kinetics for methanol in ice are shown to display a very strong concentration dependence that may contribute, in addition to variations in laboratory samples microstructure, to the disagreements reported in the literature regarding the transport properties of ice.

11.
J Chem Phys ; 123(18): 184501, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16292908

RESUMEN

The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA