Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Oncol Lett ; 25(2): 44, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36644146

RESUMEN

The immunohistochemical (IHC) evaluation of epidermal growth factor 2 (HER2) for the diagnosis of breast cancer is still qualitative with a high degree of inter-observer variability, and thus requires the incorporation of complementary techniques such as fluorescent in situ hybridization (FISH) to resolve the diagnosis. Implementing automatic algorithms to classify IHC biomarkers is crucial for typifying the tumor and deciding on therapy for each patient with better performance. The present study aims to demonstrate that, using an explainable Machine Learning (ML) model for the classification of HER2 photomicrographs, it is possible to determine criteria to improve the value of IHC analysis. We trained a logistic regression-based supervised ML model with 393 IHC microscopy images from 131 patients, to discriminate between upregulated and normal expression of the HER2 protein. Pathologists' diagnoses (IHC only) vs. the final diagnosis complemented with FISH (IHC + FISH) were used as training outputs. Basic performance metrics and receiver operating characteristic curve analysis were used together with an explainability algorithm based on Shapley Additive exPlanations (SHAP) values to understand training differences. The model could discriminate amplified IHC from normal expression with better performance when the training output was the IHC + FISH final diagnosis (IHC vs. IHC + FISH: area under the curve, 0.94 vs. 0.81). This may be explained by the increased analytical impact of the membrane distribution criteria over the global intensity of the signal, according to SHAP value interpretation. The classification model improved its performance when the training input was the final diagnosis, downplaying the weighting of the intensity of the IHC signal, suggesting that to improve pathological diagnosis before FISH consultation, it is necessary to emphasize subcellular patterns of staining.

2.
Front Public Health ; 11: 1270557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192555

RESUMEN

Type 2 diabetes and its associated cardiovascular risk is an escalating epidemic that represents a significant public health burden due to increased morbidity and mortality, disproportionately affecting disadvantaged communities. Poor glycaemic control exacerbates this burden by increasing retinal, renal, and cardiac damage and raising healthcare costs. This predicament underscores the urgent need for research into cost-effective approaches to preventing diabetes complications. An important but often overlooked strategy to improve metabolic control in diabetic patients is the treatment of periodontitis. Our aim is to assess whether the inclusion of periodontitis treatment in diabetes management strategies can effectively improve metabolic control, and to advocate for its inclusion from an equity perspective. We conducted a comprehensive review of the literature from 2000 to 2023. We analyzed the pathophysiological links between periodontitis, diabetes, and atherosclerotic cardiovascular disease, all of which have inflammation as a central component. We also examined the inequalities in health care spending in this context. Our findings suggest that incorporating routine screening and treatment of periodontitis into national health programs, with coordinated efforts between physicians and dentists, is a cost-effective measure to improve metabolic control, reduce complications and improve the overall quality of life of people with diabetes.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Epidemias , Periodontitis , Humanos , Diabetes Mellitus Tipo 2/terapia , Enfermedades Cardiovasculares/terapia , Calidad de Vida , Periodontitis/epidemiología , Periodontitis/terapia
3.
Front Cell Neurosci ; 16: 866122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634466

RESUMEN

Menopause transition can be interpreted as a vulnerable state characterized by estrogen deficiency with detrimental systemic effects as the low-grade chronic inflammation that appears with aging and partly explains age-related disorders as cancer, diabetes mellitus and increased risk of cognitive impairment. Over the course of a lifetime, estrogen produces several beneficial effects in healthy neurological tissues as well as cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the efficacy of hormone treatment in menopausal women has failed to confirm the benefit reported in observational studies. Unambiguously, enhanced verbal memory is the most robust finding from longitudinal and cross-sectional studies, what merits consideration for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related brain activity and functional connectivity remain, however, unexplored. In this context, the resting state paradigm may provide valuable information about reproductive aging and hormonal treatment effects, and their relationship with brain imaging of functional connectivity may be key to understand and anticipate estrogen cognitive protective effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-to-long lasting protective effects of estrogen, we will provide a comprehensive review of cognitive tasks used in animal studies to evaluate the effect of hormone treatment on cognitive performance and discuss about the tasks best suited to the demonstration of clinically significant differences in cognitive performance to be applied in human studies. Eventually, we will focus on studies evaluating the DMN activity and responsiveness to pharmacological stimulation in humans.

4.
Neural Regen Res ; 17(8): 1629-1632, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35017407

RESUMEN

Estrogen produces several beneficial effects in healthy neurological tissues and exhibits cardioprotective effects. Hormone therapy has been widely used to treat menopausal estrogen deficiency for more than 80 years. Despite high initial expectations of cardioprotective effects, there has been substantial distrust following important randomized clinical trials, such as the Women's Health Initiative. Subsequently, the timing of treatment in relation to the onset of menopause came under consideration and led to the proposal of the timing hypothesis, that early initial treatment is important, and benefits are lost as the timing since menopause becomes prolonged. Subsequent analyses of the Women's Health Initiative data, together with more recent data from randomized and observational trials, consistently show reductions in coronary heart disease and mortality in younger menopausal women. Regarding cognitive function, the timing hypothesis is consistent with observations from basic and animal studies. There is some clinical evidence to support the benefits of hormonal therapy in this context, though skepticism remains due to the paucity of clinical trials of substantial length in younger menopausal women. It is likely that the effects of estrogens on cognitive performance are due to rapid mechanisms, including mechanisms that influence Ca2+ homeostasis dynamics, provide protection in a hostile environment and reduce inflammatory signals from neural tissues. In the future, inflammatory profiles accounting for early signs of pathological inflammation might help identify the 'window of opportunity' to use estrogen therapy for successful cognitive protection.

5.
Int J Exp Pathol ; 102(6): 242-248, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34791724

RESUMEN

Optogenetics is a molecular biological technique involving transfection of cells with photosensitive proteins and the subsequent study of their biological effects. The aim of this study was to evaluate the effect of blue light on the survival of HeLa cells, transfected with channelrhodopsin-2 (ChR2). HeLa wild-type cells were transfected with a plasmid that contained the gene for ChR2. Transfection and channel function were evaluated by real-time polymerase chain reaction (RT-PCR), fluorescence imaging using green fluorescent protein (GFP) and flow cytometry for intracellular calcium changes using a Fura Red probe. We developed a platform for optogenetic stimulation for use within the cell culture incubator. Different stimulation procedures using blue light (467 nm) were applied for up to 24 h. Cell survival was determined by flow cytometry using propidium iodide and rhodamine probes. Change in cell survival showed a statistically significant (p < 0.05) inverse association with the frequency and time of application of the light stimulus. This change seemed to be associated with the ChR2 cis-trans-isomerization cycle. Cell death was associated with high concentrations of calcium in the cytoplasm and stimulation intervals less than the period of isomerization. It is possible to transfect HeLa cells with ChR2 and control their survival under blue light stimulation. We suggest that this practice should be considered in the future development of optogenetic systems in biological or biomedical research.


Asunto(s)
Supervivencia Celular/fisiología , Calcio/metabolismo , Ciclo Celular/fisiología , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células HeLa , Humanos , Optogenética , Transfección
6.
Front Physiol ; 11: 444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528302

RESUMEN

17ß-estradiol is a neuronal survival factor against oxidative stress that triggers its protective effect even in the absence of classical estrogen receptors. The polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channel has been proposed as a steroid receptor implied in tissue protection against oxidative damage. We show here that TRPV1 is sufficient condition for 17ß-estradiol to enhance metabolic performance in injured cells. Specifically, in TRPV1 expressing cells, the application of 17ß-estradiol within the first 3 h avoided H2O2-dependent mitochondrial depolarization and the activation of caspase 3/7 protecting against the irreversible damage triggered by H2O2. Furthermore, 17ß-estradiol potentiates TRPV1 single channel activity associated with an increased open probability. This effect was not observed after the application of 17α-estradiol. We explored the TRPV1-Estrogen relationship also in primary culture of hippocampal-derived neurons and observed that 17ß-estradiol cell protection against H2O2-induced damage was independent of estrogen receptors pathway activation, membrane started and stereospecific. These results support the role of TRPV1 as a 17ß-estradiol-activated ionotropic membrane receptor coupling with mitochondrial function and cell survival.

7.
Neural Plast ; 2018: 6798712, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050571

RESUMEN

Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.


Asunto(s)
Trastornos Mentales/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteostasis/fisiología , Animales , Humanos
8.
Front Physiol ; 9: 682, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922176

RESUMEN

The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 µM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 µM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

9.
Neural Regen Res ; 11(8): 1204-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27651755

RESUMEN

Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1) expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

10.
PLoS One ; 10(11): e0140793, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529507

RESUMEN

OBJECTIVE: To examine the performances of an alternative strategy to decide initiating BP-lowering drugs called Proportional Benefit (PB). It selects candidates addressing the inequity induced by the high-risk approach since it distributes the gains proportionally to the burden of disease by genders and ages. STUDY DESIGN AND SETTING: Mild hypertensives from a Realistic Virtual Population by genders and 10-year age classes (range 35-64 years) received simulated treatment over 10 years according to the PB strategy or the 2007 ESH/ESC guidelines (ESH/ESC). Primary outcomes were the relative life-year gain (life-years gained-to-years of potential life lost ratio) and the number needed to treat to gain a life-year. A sensitivity analysis was performed to assess the impact of changes introduced by the ESH/ESC guidelines appeared in 2013 on these outcomes. RESULTS: The 2007 ESH/ESC relative life-year gains by ages were 2%; 10%; 14% in men, and 0%; 2%; 11% in women, this gradient being abolished by the PB (relative gain in all categories = 10%), while preserving the same overall gain in life-years. The redistribution of benefits improved the profile of residual events in younger individuals compared to the 2007 ESH/ESC guidelines. The PB strategy was more efficient (NNT = 131) than the 2013 ESH/ESC guidelines, whatever the level of evidence of the scenario adopted (NNT = 139 and NNT = 179 with the evidence-based scenario and the opinion-based scenario, respectively), although the 2007 ESH/ESC guidelines remained the most efficient strategy (NNT = 114). CONCLUSION: The Proportional Benefit strategy provides the first response ever proposed against the inequity of resource use when treating highest risk people. It occupies an intermediate position with regards to the efficiency expected from the application of historical and current ESH/ESC hypertension guidelines. Our approach allows adapting recommendations to the risk and resources of a particular country.


Asunto(s)
Antihipertensivos/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Hipertensión/tratamiento farmacológico , Adulto , Factores de Edad , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Análisis Costo-Beneficio , Femenino , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Factores Sexuales
11.
PLoS One ; 6(3): e17508, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21408615

RESUMEN

BACKGROUND: The prediction of the public health impact of a preventive strategy provides valuable support for decision-making. International guidelines for hypertension management have introduced the level of absolute cardiovascular risk in the definition of the treatment target population. The public health impact of implementing such a recommendation has not been measured. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the efficiency of three treatment scenarios according to historical and current versions of practice guidelines on a Realistic Virtual Population representative of the French population aged from 35 to 64 years: 1) BP≥160/95 mm Hg; 2) BP≥140/90 mm Hg and 3) BP≥140/90 mm Hg plus increased CVD risk. We compared the eligibility following the ESC guidelines with the recently observed proportion of treated amongst hypertensive individuals reported by the Etude Nationale Nutrition Santé survey. Lowering the threshold to define hypertension multiplied by 2.5 the number of eligible individuals. Applying the cardiovascular risk rule reduced this number significantly: less than 1/4 of hypertensive women under 55 years and less than 1/3 of hypertensive men below 45 years of age. This was the most efficient strategy. Compared to the simulated guidelines application, men of all ages were undertreated (between 32 and 60%), as were women over 55 years (70%). By contrast, younger women were over-treated (over 200%). CONCLUSION: The global CVD risk approach to decide for treatment is more efficient than the simple blood pressure level. However, lack of screening rather than guideline application seems to explain the low prescription rates among hypertensive individuals in France. Multidimensional analyses required to obtain these results are possible only through databases at the individual level: realistic virtual populations should become the gold standard for assessing the impact of public health policies at the national level.


Asunto(s)
Simulación por Computador , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Internacionalidad , Adulto , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Prescripciones de Medicamentos , Femenino , Francia/epidemiología , Implementación de Plan de Salud , Directrices para la Planificación en Salud , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA