Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699343

RESUMEN

Introduction: Magnetization transfer MRI is sensitive to semi-solid macromolecules, including amyloid beta, and has been used to discriminate Alzheimer's disease (AD) patients from controls. Here, we utilize an unconstrained 2-pool quantitative MT (qMT) approach that quantifies the longitudinal relaxation rates of free water and semi-solids separately, and investigate its sensitivity to amyloid accumulation in preclinical subjects. Methods: We recruited 15 cognitively normal subjects, of which nine were amyloid positive by [ 18 F]Florbetaben PET. A 12 min qMT scan was used to estimate the unconstrained 2-pool qMT parameters. Group comparisons and correlations were analyzed at the lobar level. Results: The exchange rate and semi-solid pool's were sensitive to the amyloid concentration. The former finding is consistent with previous reports in clinical AD, but the latter is novel as its value is typically constrained. Discussion: qMT MRI may be a promising surrogate marker of amyloid beta without the need for contrast agents or radiotracers.

2.
ArXiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36713253

RESUMEN

Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a T1s of the semi-solid spin pool that is much shorter than T1f of the free pool. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated T1f≈1.84s and T1s≈0.34s in healthy white matter. Our results confirm the reports that T1s≪T1f and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of m0s≈0.212, which is larger than previously assumed. An analysis of T1f in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.

3.
Magn Reson Med ; 90(4): 1297-1315, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37183791

RESUMEN

PURPOSE: This study investigated the artifacts arising from different types of head motion in brain MR images and how well these artifacts can be compensated using retrospective correction based on two different motion-tracking techniques. METHODS: MPRAGE images were acquired using a 3 T MR scanner on a cohort of nine healthy participants. Subjects moved their head to generate circular motion (4 or 6 cycles/min), stepwise motion (small and large) and "simulated realistic" motion (nodding and slow diagonal motion), based on visual instructions. One MPRAGE scan without deliberate motion was always acquired as a "no motion" reference. Three dimensional fat-navigator (FatNavs) and a Tracoline markerless device (TracInnovations) were used to obtain motion estimates and images were separately reconstructed retrospectively from the raw data based on these different motion estimates. RESULTS: Image quality was recovered from both motion tracking techniques in our stepwise and slow diagonal motion scenarios in almost all cases, with the apparent visual image quality comparable to the no-motion case. FatNav-based motion correction was further improved in the case of stepwise motion using a skull masking procedure to exclude non-rigid motion of the neck from the co-registration step. In the case of circular motion, both methods struggled to correct for all motion artifacts. CONCLUSION: High image quality could be recovered in cases of stepwise and slow diagonal motion using both motion estimation techniques. The circular motion scenario led to more severe image artifacts that could not be fully compensated by the retrospective motion correction techniques used.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Movimiento (Física) , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cabeza , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Methods Ecol Evol ; 12(6): 1093-1102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34262682

RESUMEN

Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow.In this paper, we present a new R package-rasterdiv-to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns.The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...