Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(48): 22193-22201, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417568

RESUMEN

A small but growing number of molecular compounds have been isolated featuring divalent lanthanides with 4fn5dz21 electron configurations. While the majority of these possess trigonal coordination geometries, we previously reported the first examples of linear divalent metallocenes Ln(CpiPr5)2 (Ln = Tb, Dy; CpiPr5 = pentaisopropylcyclopentadienyl). Here, we report the synthesis and characterization of the remainder of the Ln(CpiPr5)2 (1-Ln) series (including Y and excluding Pm). The compounds can be synthesized through salt metathesis of LnI3 and NaCpiPr5 followed by potassium graphite reduction for Ln = Y, La, Ce, Pr, Nd, Gd, Ho, and Er, by in situ reduction during salt metathesis of LnI3 and NaCpiPr5 for Ln = Tm and Lu, or through salt metathesis from LnI2 and NaCpiPr5 for Ln = Sm, Eu, and Yb. Single crystal X-ray diffraction analyses of 1-Ln confirm a linear coordination geometry with pseudo-D5d symmetry for the entire series. Structural and ultraviolet-visible spectroscopy data support a 4fn+1 electron configuration for Ln2+ = Sm, Eu, Tm, and Yb and a 4fn5dz21 configuration for the other lanthanides ([Kr]4dz21 for Y2+). Characterization of 1-Ln (Ln = Y, La) using electron paramagnetic resonance spectroscopy reveals significant s-d orbital mixing in the highest occupied molecular orbital and hyperfine coupling constants that are the largest reported to date for divalent compounds of yttrium and lanthanum. Evaluation of the room temperature magnetic susceptibilities of 1-Ln and comparison with values previously reported for trigonal Ln2+ compounds suggests that the more pronounced 6s-5d mixing may be associated with weaker 4f-5d spin coupling.

2.
Biochemistry ; 61(2): 107-116, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34989236

RESUMEN

The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.


Asunto(s)
Proteínas Bacterianas , Proteínas Hierro-Azufre , S-Adenosilmetionina , Shewanella , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radicales Libres/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Shewanella/química , Shewanella/metabolismo
3.
Science ; 375(6577): 198-202, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35025637

RESUMEN

Magnetic effects of lanthanide bonding Lanthanide coordination compounds have attracted attention for their persistent magnetic properties near liquid nitrogen temperature, well above alternative molecular magnets. Gould et al. report that introducing metal-metal bonding can enhance coercivity. Reduction of iodide-bridged terbium or dysprosium dimers resulted in a single electron bond between the metals, which enforced alignment of the other valence electrons. The resultant coercive fields exceeded 14 tesla below 50 and 60 kelvin for the terbium and dysprosium compounds, respectively. ­JSY

4.
Nat Chem ; 13(10): 1001-1005, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34282306

RESUMEN

Baird's rule predicts that molecules with 4n π electrons should be aromatic in the triplet state, but the realization of simple ring systems with such an electronic ground state has been stymied by these molecules' tendency to distort into structures bearing a large singlet-triplet gap. Here, we show that the elusive benzene diradical dianion can be stabilized through creation of a binucleating ligand that enforces a tightly constrained inverse sandwich structure and direct magnetic exchange coupling. Specifically, we report the compounds [K(18-crown-6)(THF)2]2[M2(BzN6-Mes)] (M = Y, Gd; BzN6-Mes = 1,3,5-tris[2',6'-(N-mesityl)dimethanamino-4'-tert-butylphenyl]benzene), which feature a trigonal ligand that binds one trivalent metal ion on each face of a central benzene dianion. Antiferromagnetic exchange in the Gd3+ compound preferentially stabilizes the triplet state such that it becomes the molecular ground state. Single-crystal X-ray diffraction data and nucleus-independent chemical shift calculations support aromaticity, in agreement with Baird's rule.


Asunto(s)
Benceno/química , Aniones , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular
5.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34042234

RESUMEN

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Asunto(s)
Materiales Biomiméticos/química , Hidrocarburos Aromáticos con Puentes/química , Complejos de Coordinación/química , Protones , Materiales Biomiméticos/síntesis química , Hidrocarburos Aromáticos con Puentes/síntesis química , Calcio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Manganeso/química , Estructura Molecular , Complejo de Proteína del Fotosistema II/química , Itrio/química
6.
Biochemistry ; 59(51): 4864-4872, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33319991

RESUMEN

The S3 state is the last semi-stable state in the water splitting reaction that is catalyzed by the Mn4O5Ca cluster that makes up the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent high-field/frequency (95 GHz) electron paramagnetic resonance (EPR) studies of PSII isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus have found broadened signals induced by chemical modification of the S3 state. These signals are ascribed to an S3 form that contains a five-coordinate MnIV center bridged to a cuboidal MnIV3O4Ca unit. High-resolution X-ray free-electron laser studies of the S3 state have observed the OEC with all-octahedrally coordinated MnIV in what is described as an open cuboid-like cluster. No five-coordinate MnIV centers have been reported in these S3 state structures. Here, we report high-field/frequency (130 GHz) pulse EPR of the S3 state in Synechocystis sp. PCC 6803 PSII as isolated in the presence of glycerol. The S3 state of PSII from Synechocystis exhibits multiple broadened forms (≈69% of the total signal) similar to those seen in the chemically modified S3 centers from T. elongatus. Field-dependent ELDOR-detected nuclear magnetic resonance resolves two classes of 55Mn nuclear spin transitions: one class with small hyperfine couplings (|A| ≈ 1-7 MHz) and another with larger hyperfine couplings (|A| ≈ 100 MHz). These results are consistent with an all-MnIV4 open cubane structure of the S3 state and suggest that the broadened S3 signals arise from a perturbation of Mn4A and/or Mn3B, possibly induced by the presence of glycerol in the as-isolated Synechocystis PSII.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Synechocystis/enzimología , Crioprotectores/química , Espectroscopía de Resonancia por Spin del Electrón , Glicerol/química , Manganeso/química , Oxidación-Reducción , Oxígeno/química
7.
J Am Chem Soc ; 142(8): 3753-3761, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32013412

RESUMEN

The S3 state is currently the last observable intermediate prior to O-O bond formation at the oxygen-evolving complex (OEC) of Photosystem II, and its electronic structure has been assigned to a homovalent MnIV4 core with an S = 3 ground state. While structural interpretations based on the EPR spectroscopic features of the S3 state provide valuable mechanistic insight, corresponding synthetic and spectroscopic studies on tetranuclear complexes mirroring the Mn oxidation states of the S3 state remain rare. Herein, we report the synthesis and characterization by XAS and multifrequency EPR spectroscopy of a MnIV4O4 cuboidal complex as a spectroscopic model of the S3 state. Results show that this MnIV4O4 complex has an S = 3 ground state with isotropic 55Mn hyperfine coupling constants of -75, -88, -91, and 66 MHz. These parameters are consistent with an αααß spin topology approaching the trimer-monomer magnetic coupling model of pseudo-octahedral MnIV centers. Importantly, the spin ground state changes from S = 1/2 to S = 3 as the OEC is oxidized from the S2 state to the S3 state. This same spin state change is observed following oxidation of the previously reported MnIIIMnIV3O4 cuboidal complex to the MnIV4O4 complex described here. This sets a synthetic precedent for the observed low-spin to high-spin conversion in the OEC.


Asunto(s)
Complejos de Coordinación/química , Compuestos de Manganeso/química , Óxidos/química , Oxígeno/química , Oxidación-Reducción , Análisis Espectral/métodos
8.
Science ; 366(6463): 305-306, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624198
9.
J Am Chem Soc ; 140(49): 17175-17187, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407806

RESUMEN

Despite extensive biochemical, spectroscopic, and computational studies, the mechanism of biological water oxidation by the oxygen evolving complex (OEC) of Photosystem II remains a subject of significant debate. Mechanistic proposals are guided by the characterization of reaction intermediates such as the S2 state, which features two characteristic EPR signals at g = 2 and g = 4.1. Two nearly isoenergetic structural isomers have been proposed as the source of these distinct signals, but relevant structure-electronic structure studies remain rare. Herein, we report the synthesis, crystal structure, electrochemistry, XAS, magnetic susceptibility, variable temperature CW-EPR, and pulse EPR data for a series of [MnIIIMn3IVO4] cuboidal complexes as spectroscopic models of the S2 state of the OEC. Resembling the oxidation state and EPR spectra of the S2 state of the OEC, these model complexes show two EPR signals, a broad low field signal and a multiline signal, that are remarkably similar to the biological system. The effect of systematic changes in the nature of the bridging ligands on spectroscopy were studied. Results show that the electronic structure of tetranuclear Mn complexes is highly sensitive to even small geometric changes and the nature of the bridging ligands. Our model studies suggest that the spectroscopic properties of the OEC may also react very sensitively to small changes in structure; the effect of protonation state and other reorganization processes need to be carefully assessed.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Materiales Biomiméticos/síntesis química , Complejos de Coordinación/síntesis química , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Fenómenos Magnéticos , Manganeso/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Temperatura
10.
J Phys Chem B ; 122(5): 1588-1599, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29303579

RESUMEN

The Mn4CaO5 oxygen-evolving complex (OEC) of photosystem II catalyzes the light-driven oxidation of two substrate waters to molecular oxygen. ELDOR-detected NMR along with computational studies indicated that ammonia, a substrate analogue, binds as a terminal ligand to the Mn4A ion trans to the O5 µ4 oxido bridge. Results from electron spin echo envelope modulation (ESEEM) spectroscopy confirmed this and showed that ammonia hydrogen bonds to the carboxylate side chain of D1-Asp61. Here we further probe the environment of OEC with an emphasis on the proximity of exchangeable protons, comparing ammonia-bound and unbound forms. Our ESEEM and electron nuclear double resonance (ENDOR) results indicate that ammonia substitutes for the W1 terminal water ligand without significantly altering the electronic structure of the OEC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...