Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38747438

RESUMEN

Surface-specific nonlinear optical techniques are ideally suited to investigate the complex structure of aqueous interfaces. For colloidal particles dispersed in aqueous solutions, interfacial properties can be retrieved with angle-resolved second harmonic scattering (AR-SHS). The mathematical framework of AR-SHS does not require a priori knowledge on the electrostatic distribution in the first few nanometers close to the interface, therefore allowing us to formulate a molecular-level description of the electrical double layer (EDL) based on the experimental data. However, farther away from the interface, an analytical form of the electrostatic potential decay is necessary to account for the distance dependence of the surface electrostatic field propagating into the solution. This requirement is especially important at low ionic strengths, where the electrostatic field is not efficiently screened by counterions. Here, we examine to what extent the analytical form of the electrostatic potential decay impacts the AR-SHS data analysis. We analyze the effect of different functions on the scattering form factors, on the integrated AR-SHS signal intensity, and on the surface parameters extracted from fitting the AR-SHS data. We find that the trends of the surface parameters remain similar regardless of the chosen function, demonstrating the robustness of our approach to establish a molecular-level picture of the EDL. At ionic strengths <10-4M for 100-nm diameter particles, a functional form that physically represents counterions packed more densely in the vicinity of the surface than in the case of the Poisson-Boltzmann distribution has the largest impact, resulting in an overestimation of the obtained surface potential.

3.
Faraday Discuss ; 246(0): 407-425, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37455624

RESUMEN

Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative estimation of the thickness of the EDL can be obtained using simple theoretical models, following experimentally its evolution is not straightforward and can be even more complicated in nano- or microscale systems, particularly when changing the ionic concentration by several orders of magnitude. Here, we bring insight into the structure of the EDL of SiO2 nanoparticle suspensions and its evolution with increasing ionic concentration using angle-resolved second harmonic scattering (AR-SHS). Below millimolar salt concentrations, we can successively characterize inner-sphere adsorption, diffuse layer formation, and outer-sphere adsorption. Moreover, we show for the first time that, by appropriately selecting the nanoparticle size, it is possible to retrieve information also in the millimolar range. There, we observe a decrease in the magnitude of the surface potential corresponding to a compression in the EDL thickness, which agrees with the results of several other electroanalytical and optical techniques. Molecular dynamics simulations suggest that the EDL compression mainly results from the diffuse layer compression rather than outer-sphere ions (Stern plane) moving closer to the surface.

5.
J Chem Phys ; 158(9): 094711, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889968

RESUMEN

Polarimetric angle-resolved second-harmonic scattering (AR-SHS) is an all-optical tool enabling the study of unlabeled interfaces of nano-sized particles in an aqueous solution. As the second harmonic signal is modulated by interference between nonlinear contributions originating at the particle's surface and those originating in the bulk electrolyte solution due to the presence of a surface electrostatic field, the AR-SHS patterns give insight into the structure of the electrical double layer. The mathematical framework of AR-SHS has been previously established, in particular regarding changes in probing depth with ionic strength. However, other experimental factors may influence the AR-SHS patterns. Here, we calculate the size dependence of the surface and electrostatic geometric form factors for nonlinear scattering, together with their relative contribution to the AR-SHS patterns. We show that the electrostatic term is stronger in the forward scattering direction for smaller particle sizes, while the ratio of the electrostatic to surface terms decreases with increasing size. Besides this competing effect, the total AR-SHS signal intensity is also weighted by the particle's surface characteristics, given by the surface potential Φ0 and the second-order surface susceptibility χs,2 2. The weighting effect is experimentally demonstrated by comparing SiO2 particles of different sizes in NaCl and NaOH solutions of varying ionic strengths. For NaOH, the larger χs,2 2 values generated by deprotonation of surface silanol groups prevail over the electrostatic screening occurring at high ionic strengths; however, only for larger particle sizes. This study establishes a better connection between the AR-SHS patterns and surface properties and predicts trends for arbitrarily-sized particles.

6.
J Phys Chem Lett ; 13(37): 8677-8683, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36094378

RESUMEN

The acid-base properties of surfaces significantly influence catalytic and (photo)electrochemical processes. Estimation of acid dissociation constants (pKa values) for colloids is commonly performed through electroanalytical techniques or spectroscopic methods employing label molecules. Here, we show that polarimetric angle-resolved second harmonic scattering (AR-SHS) can be used as an all-optical, label-free probe of colloid surface pKa values. We apply AR-SHS to dispersions of 100 nm anatase TiO2 particles to extract surface potential and surface susceptibility, a measure of interfacial water orientation, as a function of pH. The surface potential follows changes in surface charge density, while the interfacial water orientation inverts at pH ∼4.8, ∼6, and ∼7.6. As the variation in bulk pH modifies the populations of Ti-OH2+, Ti-OH, and Ti-O- interfacial groups, a change in water orientation reports on the ratio of protonated/deprotonated species. Such observation allows for pKa evaluation from plots of surface susceptibility versus pH. A Nerstian trend in the surface potential is additionally demonstrated.


Asunto(s)
Nanopartículas , Agua , Coloides/química , Titanio/química , Agua/química
7.
J Phys Chem C Nanomater Interfaces ; 125(45): 25261-25274, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-35591899

RESUMEN

Ion-specific effects play a crucial role in controlling the stability of colloidal systems and regulating interfacial processes. Although mechanistic pictures have been developed to explain the electrostatic structure of solid/water colloidal interfaces, ion-specific effects remain poorly understood. Here we quantify the average interfacial water orientation and the electrostatic surface potential around 100 nm SiO2 and TiO2 colloidal particles in the presence of NaCl, RbCl, and CaCl2 using polarimetric angle-resolved second harmonic scattering. We show that these two parameters can be used to establish the ion adsorption mechanism in a low ionic strength regime (<1 mM added salt). The relative differences between salts as a function of the ionic strength demonstrate cation- and surface-specific preferences for inner- vs outer-sphere adsorption. Compared to monovalent Rb+ and Na+, Ca2+ is found to be preferentially adsorbed as outer-sphere on SiO2 surfaces, while a dominant inner-sphere adsorption is observed for Ca2+ on TiO2. Molecular dynamics simulations performed on crystalline SiO2 and TiO2 surfaces support the experimental conclusions. This work contributes to the understanding of the electrostatic environment around colloidal nanoparticles on a molecular level by providing insight into ion-specific effects with micromolar sensitivity.

8.
ACS Catal ; 10(11): 6084-6093, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32551180

RESUMEN

Understanding the mechanism of the oxygen evolution reaction (OER), the oxidative half of electrolytic water splitting, has proven challenging. Perhaps the largest hurdle has been gaining experimental insight into the active site of the electrocatalyst used to facilitate this chemistry. Decades of study have clarified that a range of transition-metal oxides have particularly high catalytic activity for the OER. Unfortunately, for virtually all of these materials, metal oxidation and the OER occur at similar potentials. As a result, catalyst surface topography and electronic structure are expected to continuously evolve under reactive conditions. Gaining experimental insight into the OER mechanism on such materials thus requires a tool that allows spatially resolved characterization of the OER activity. In this study, we overcome this formidable experimental challenge using second harmonic microscopy and electrochemical methods to characterize the spatial heterogeneity of OER activity on polycrystalline Au working electrodes. At moderately anodic potentials, we find that the OER activity of the electrode is dominated by <1% of the surface area and that there are two types of active sites. The first is observed at potentials positive of the OER onset and is stable under potential cycling (and thus presumably extends multiple layers into the bulk gold electrode). The second occurs at potentials negative of the OER onset and is removed by potential cycling (suggesting that it involves a structural motif only 1-2 Au layers deep). This type of active site is most easily understood as the catalytically active species (hydrous oxide) in the so-called incipient hydrous oxide/adatom mediator model of electrocatalysis. Combining the ability we demonstrate here to characterize the spatial heterogeneity of OER activity with a systematic program of electrode surface structural modification offers the possibility of creating a generation of OER electrocatalysts with unusually high activity.

9.
J Phys Chem C Nanomater Interfaces ; 124(20): 10961-10974, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35592180

RESUMEN

Colloidal nanoparticles exhibit unique size-dependent properties differing from their bulk counterpart, which can be particularly relevant for catalytic applications. To optimize surface-mediated chemical reactions, the understanding of the microscopic structure of the nanoparticle-liquid interface is of paramount importance. Here we use polarimetric angle-resolved second harmonic scattering (AR-SHS) to determine surface potential values as well as interfacial water orientation of ∼100 nm diameter amorphous TiO2 nanoparticles dispersed in aqueous solutions, without any initial assumption on the distribution of interfacial charges. We find three regions of different behavior with increasing NaCl concentration. At very low ionic strengths (0-10 µM), the Na+ ions are preferentially adsorbed at the TiO2 surface as inner-sphere complexes. At low ionic strengths (10-100 µM), a distribution of counterions equivalent to a diffuse layer is observed, while at higher ionic strengths (>100 µM), an additional layer of hydrated condensed ions is formed. We find a similar behavior for TiO2 nanoparticles in solutions of different basic pH. Compared to identically sized SiO2 nanoparticles, the TiO2 interface has a higher affinity for Na+ ions, which we further confirm with molecular dynamics simulations. With its ability to monitor ion adsorption at the surface with micromolar sensitivity and changes in the surface potential, AR-SHS is a powerful tool to investigate interfacial properties in a variety of catalytic and photocatalytic applications.

10.
J Phys Chem C Nanomater Interfaces ; 124(37): 20021-20034, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-35693431

RESUMEN

Designing efficient catalysts requires correlating surface structure and local chemical composition with reactivity on length scales from nanometers to tens of microns. While much work has been done on this structure/function correlation on single crystals, comparatively little has been done for catalysts of relevance in applications. Such materials are typically highly heterogeneous and thus require methods that allow mapping of the structure/function relationship during electrochemical conversion. Here, we use optical second harmonic imaging combined with cyclic voltammetry to map the surface of gold nanocrystalline and polycrystalline electrodes during electrooxidation and to quantify the spatial extent of surface reconstruction during potential cycling. The wide-field configuration of our microscope allows for real-time imaging of an area ∼100 µm in diameter with submicron resolution. By analyzing the voltage dependence of each pixel, we uncover the heterogeneity of the second harmonic signal and quantify the fraction of domains where it follows a positive quadratic dependence with increasing bias. There, the second harmonic intensity is mainly ascribed to electronic polarization contributions at the metal/electrolyte interface. Additionally, we locate areas where the second harmonic signal follows a negative quadratic dependence with increasing bias, which also show the largest changes during successive cyclic voltammetry sweeps as determined by an additional correlation coefficient analysis. We assign these areas to domains of higher roughness that are prone to potential-induced surface restructuring and where anion adsorption occurs at lower potentials than expected based on the cyclic voltammetry.

11.
J Phys Chem C Nanomater Interfaces ; 123(33): 20393-20404, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35692558

RESUMEN

The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations <1 mM, no charge condensation layer is observed. These findings are used to compute the surface charge densities using the Gouy-Chapman and Gouy-Chapman-Stern models. Furthermore, by using the AR-SHS data, we are able to determine the preferred water orientation in the layer directly in contact with the silica interface. Molecular dynamics simulations confirm the experimental trends and allow deciphering of the contributions of water layers to the total response.

12.
Chem Mater ; 29(8): 3754-3762, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28989233

RESUMEN

The trapping dynamics of conduction-band electrons in colloidal degenerately doped n-CdSe nanocrystals prepared by photochemical reduction (photodoping) were measured by direct optical methods. The nanocrystals show spontaneous electron trapping with distributed kinetics that extend to remarkably long timescales. Shifts in nanocrystal band-edge potentials caused by quantum confinement and surface ion stoichiometry were also measured by spectroelectrochemical techniques, and their relationship to the slow electron trapping is discussed. The very long electron-trapping timescales observed in these measurements are more consistent with atomic rearrangement than with fundamental electron-transfer processes. Such slow and broadly distributed electron-trapping dynamics are reminiscent of the well-known distributed dynamics of nanocrystal photoluminescence blinking, and potential relationships between the two phenomena are discussed.

13.
ACS Nano ; 11(10): 10430-10438, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28915009

RESUMEN

We examine the effects of CdS shell growth on photochemical reduction of colloidal CdSe quantum dots (QDs) and describe the spectroscopic properties of the resulting n-type CdSe/CdS QDs. CdS shell growth greatly slows electron trapping. Because of this improvement, complete two-electron occupancy of the 1Se conduction-band orbital is achieved in CdSe/CdS QDs and found to be much more stable than in past experiments. Simultaneous photoluminescence at two different energies is now observed from QDs possessing two excess conduction-band electrons, reflecting competing recombination of discretized 1Se and 1Pe conduction-band electrons within photogenerated four-carrier negative tetrons (three electrons and one hole). Stable occupancy of the 1Pe level is not achievable under these conditions, and possible reasons are discussed. The stability and accessibility of these multielectron configurations, and the facile spectroscopic detection of negative tetrons, both make photodoped core/shell QDs attractive for exploring the physical properties of free-standing heavily n-doped colloidal CdSe-based QDs.

14.
J Phys Chem Lett ; 8(17): 3997-4003, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28763227

RESUMEN

Delayed luminescence involving charge-carrier trapping and detrapping has recently been identified as a widespread and possibly universal phenomenon in colloidal quantum dots. Its near-power-law decay suggests a relationship with blinking. Here, using colloidal CuInS2 and CdSe quantum dots as model systems, we show that short (nanosecond) excitation pulses yield less delayed luminescence intensity and faster delayed luminescence decay than observed with long (millisecond) square-wave excitation pulses. Increasing the excitation power also affects the delayed luminescence intensity, but the delayed luminescence decay kinetics appear much less sensitive to excitation power than to excitation pulse width. An idealized four-state kinetic model reproduces the major experimental trends and highlights the very slow approach to steady state during photoexcitation, stemming from extremely slow detrapping of the metastable charge-separated state responsible for delayed luminescence. The impacts of these findings on proposed relationships between delayed luminescence and blinking are discussed.

15.
Chimia (Aarau) ; 71(1-2): 13-17, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28259190

RESUMEN

Colloidal semiconductor nanocrystals display remarkably bright, strongly size-dependent photoluminescence properties. Following photoexcitation of these materials, temporary charge carrier separation can occur where one or both charge carriers are trapped. Charge detrapping can reform the emissive state on long time scales up to seconds, causing delayed luminescence. This delayed luminescence has not yet been thoroughly explored, and appears to be closely associated with a phenomenon observed at the single particle level, i.e. photoluminescence intermittency (blinking). Here, some of our recent work on the delayed luminescence properties of nanocrystals of different chemical composition is reviewed. These results provide insight into the mechanism of carrier detrapping, and are discussed in the context of photoluminescence blinking.

16.
Chem Rev ; 116(18): 10820-51, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27159664

RESUMEN

Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

17.
Sci Rep ; 2: 591, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912919

RESUMEN

We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.


Asunto(s)
Compuestos de Calcio/química , Fuentes Generadoras de Energía , Yoduros/química , Plomo/química , Nanopartículas del Metal/química , Óxidos/química , Energía Solar , Titanio/química , Absorciometría de Fotón , Espectroscopía Dieléctrica , Diseño de Equipo , Nanopartículas del Metal/ultraestructura
18.
Nat Commun ; 3: 631, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22252555

RESUMEN

Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I(3)(-)/I(-) redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)(2)](3+/2+)(PF(6))(3/2) as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO(2), yielded a power conversion efficiency of over 10% at 100 mW cm(-2). This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I(3)(-)/I(-) redox shuttle.


Asunto(s)
Cobalto/química , Colorantes/química , Impedancia Eléctrica , Suministros de Energía Eléctrica , Electroquímica/métodos , Electrodos , Ligandos , Ensayo de Materiales , Modelos Químicos , Oxidación-Reducción , Energía Solar , Luz Solar , Titanio/química
19.
Chimia (Aarau) ; 65(9): 704-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22026184

RESUMEN

Photoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes. We aim to achieve a fundamental understanding of these phenomena by designing experiments that can be used to test and alter modern theory and computational modeling. One example illustrating recent investigations into the details of the ultrafast processes that form the basis for photoinduced charge separation at a molecular/bulk interface relevant to dye-sensitized solar cells is briefly presented here: Kinetics of interfacial PET and charge recombination processes were measured by fs and ns transient spectroscopy in a heterogeneous donor-bridge-acceptor (D-B-A) system, where D is a Ru(II)(terpyridyl-PO3)(NCS)3 complex, B an oligo-p-phenylene bridge, and A nanocrystalline TiO2. The forward ET reaction was found to be faster than vibrational relaxation of the vibronic excited state of the donor. Instead, the back ET occurred on the micros time scale and involved fully thermalized species. The D-A distance dependence of the electron transfer rate was studied by varying the number of p-phenylene units contained in the bridge moiety. The remarkably low damping factor beta = 0.16 angstroms(-1) observed for the ultrafast charge injection from the dye excited state into the conduction band of TiO2 is attributed to the coupling of electron tunneling with nonequilibrium vibrations redistributed on the bridge, giving rise to polaronic transport of charges from the donor ligand to the acceptor solid oxide surface.

20.
Chimia (Aarau) ; 65(5): 353-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21744693

RESUMEN

Nanostructured liquid/solid and solid/solid bulk heterojunctions designed for the conversion of solar energy offer ideal models for the investigation of light-induced ET dynamics at surfaces. Despite significant study of processes leading to charge generation in third-generation solar cells, a conclusive picture of the photophysics of these photovoltaic converters is still missing. More specifically searched is the link between the molecular structure of the interface and the kinetics of surface photoredox reactions. Fundamental scientific issues in this field are addressed by the research project undertaken in the frame of the NCCR MUST endeavor, an outline of which is given here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...