Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37896556

RESUMEN

MXenes are a new family of two-dimensional (2D) nanomaterials. They are inorganic compounds of metal carbides/nitrides/carbonitrides. Titanium carbide MXene (Ti3C2-MXene) was the first 2D nanomaterial reported in the MXene family in 2011. Owing to the good physical properties of Ti3C2-MXenes (e.g., conductivity, hydrophilicity, film-forming ability, elasticity) various applications in wearable sensors, energy harvesters, supercapacitors, electronic devices, etc., have been demonstrated. This paper presents the development of a piezoresistive Ti3C2-MXene sensor followed by experimental investigations of its dynamic response behavior when subjected to structural impacts. For the experimental investigations, an inclined ball impact test setup is constructed. Stainless steel balls of different masses and radii are used to apply repeatable impacts on a vertical cantilever plate. The Ti3C2-MXene sensor is attached to this cantilever plate along with a commercial piezoceramic sensor, and their responses for the structural impacts are compared. It is observed from the experiments that the average response times of the Ti3C2-MXene sensor and piezoceramic sensor are 1.28±0.24µs and 31.19±24.61µs, respectively. The fast response time of the Ti3C2-MXene sensor makes it a promising candidate for monitoring structural impacts.

2.
Nanoscale ; 14(23): 8534-8547, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35666633

RESUMEN

The global increase in mobile technology usage has created a need for better energy storage systems. With standard batteries reaching their technological limits, alternate energy storage methods are gaining momentum. In this study, we demonstrate a cheap and efficient way of building from scratch high-performance supercapacitors based on graphene oxide (GO) functionalized with tetrapyrrole derivatives: porphyrins and phthalocyanines. We present supercapacitors with capacitances about 30 times larger than those of the pristine graphene oxide-based counterparts. Experimental characterisation methods including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations revealed correlations between the structural, magnetic, electronic and thermodynamic properties of these materials and their performance as supercapacitors. Electrochemical studies indicate the complex and versatile nature of capacitive effects associated with thin layers of supramolecular composites of graphene oxide. The electrical double layer (EDL) capacitance, cation intercalation and faradaic processes are coupled. Moreover, differences in the electronic interactions between GO and tetrapyrrolic modifiers have a profound effect on the observed capacitance. At the same time, these interactions are sufficiently weak to induce only subtle spectral changes, as well as a small increase of the interlayer distance as determined by XRD measurements. The present work offers a viable strategy for manufacturing high-performance supercapacitive materials that are superior to the state of the art nanocarbon-based supercapacitors using benign electrolytes in terms of capacitance per mass unit and have the potential for application in future green energy storage technologies. Our study provides insight into the multifarious origins of supercapacitance beyond the well-known EDL mechanism.

3.
Materials (Basel) ; 13(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917049

RESUMEN

Surface mechanical attrition treatment (SMAT) was used to generate a gradient microstructure in commercial grade magnesium. Positron annihilation lifetime spectroscopy and variable energy positron beam measurements, as well as microhardness tests, electron backscatter diffraction, X-ray diffraction, and electrochemical corrosion tests, were used to investigate the created subsurface microstructure and its properties. It was found that SMAT causes an increase in dislocation density and grain refinement which results in increased hardness of the subsurface zone. The mean positron lifetime values indicate trapping of positrons in vacancies associated with dislocations and dislocation jogs. The increase of the SMAT duration and the vibration amplitude influences the depth profile of the mean positron lifetime, which reflects the defect concentration profile. Electrochemical measurements revealed that the structure induced by SMAT increases the susceptibility of magnesium to anodic oxidation, leading to the enhanced formation of hydroxide coverage at the surface and, as a consequence, to the decrease in corrosion current. No significant effect of the treatment on the residual stress was found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...