Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(5): e0151623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38567951

RESUMEN

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Asunto(s)
Macaca fascicularis , Modelos Animales , Vacuna contra la Fiebre Amarilla , Animales , Femenino , Humanos , Masculino , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunidad Innata , Biología de Sistemas/métodos , Vacunación , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología
2.
Cell Rep Med ; 3(10): 100751, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36167072

RESUMEN

Given the time and resources invested in clinical trials, innovative prediction methods are needed to decrease late-stage failure in vaccine development. We identify combinations of early innate responses that predict neutralizing antibody (nAb) responses induced in HIV-Env SOSIP immunized cynomolgus macaques using various routes of vaccine injection and adjuvants. We analyze blood myeloid cells before and 24 h after each immunization by mass cytometry using a three-step clustering, and we discriminate unique vaccine signatures based on HLA-DR, CD39, CD86, CD11b, CD45, CD64, CD14, CD32, CD11c, CD123, CD4, CD16, and CADM1 surface expression. Various combinations of these markers characterize cell families positively associated with nAb production, whereas CADM1-expressing cells are negatively associated (p < 0.05). Our results demonstrate that monitoring immune signatures during early vaccine development could assist in identifying biomarkers that predict vaccine immunogenicity.


Asunto(s)
VIH-1 , Animales , Macaca , Subunidad alfa del Receptor de Interleucina-3 , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes
3.
Vaccines (Basel) ; 9(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205932

RESUMEN

Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.

4.
Front Immunol ; 12: 784813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058925

RESUMEN

Innate immunity modulates adaptive immunity and defines the magnitude, quality, and longevity of antigen-specific T- and B- cell immune memory. Various vaccine and administration factors influence the immune response to vaccination, including the route of vaccine delivery. We studied the dynamics of innate cell responses in blood using a preclinical model of non-human primates immunized with a live attenuated vaccinia virus, a recombinant Modified vaccinia virus Ankara (MVA) expressing a gag-pol-nef fusion of HIV-1, and mass cytometry. We previously showed that it induces a strong, early, and transient innate response, but also late phenotypic modifications of blood myeloid cells after two months when injected subcutaneously. Here, we show that the early innate effector cell responses and plasma inflammatory cytokine profiles differ between subcutaneous and intradermal vaccine injection. Additionally, we show that the intradermal administration fails to induce more highly activated/mature neutrophils long after immunization, in contrast to subcutaneous administration. Different batches of antibodies, staining protocols and generations of mass cytometers were used to generate the two datasets. Mass cytometry data were analyzed in parallel using the same analytical pipeline based on three successive clustering steps, including SPADE, and categorical heatmaps were compared using the Manhattan distance to measure the similarity between cell cluster phenotypes. Overall, we show that the vaccine per se is not sufficient for the late phenotypic modifications of innate myeloid cells, which are evocative of innate immune training. Its route of administration is also crucial, likely by influencing the early innate response, and systemic inflammation, and vaccine biodistribution.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Neutrófilos/inmunología , Virus Vaccinia , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Citocinas/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Macaca fascicularis , Masculino , Virus Vaccinia/genética , Virus Vaccinia/inmunología
5.
Front Immunol ; 11: 2096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013882

RESUMEN

Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Infecciones por VIH/inmunología , Leucocitos/inmunología , Receptores CCR5/inmunología , Receptores CXCR4/inmunología , Virus Vaccinia/inmunología , Antirretrovirales/administración & dosificación , Antígeno CD11b/inmunología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/inmunología , Antígenos HLA-DR/inmunología , Humanos , Interleucina-8/inmunología , Masculino , Persona de Mediana Edad , Receptores de IgG/inmunología
6.
Front Immunol ; 10: 2384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681279

RESUMEN

Background: Rheumatoid arthritis (RA) is the most common autoimmune rheumatic disease and leads to persistent chronic inflammation. The pathophysiology of the disease is complex, involving both adaptive and innate immunity. Among innate immune cells, neutrophils have been rarely studied due to their sensitivity to freezing and they are not being collected after Ficoll purification. Methods: We used mass cytometry to perform a multidimensional phenotypic characterization of immune cells from RA-treated patients, which included the simultaneous study of 33 intra- or extra-cellular markers expressed by leukocytes. We were able to focus our study on innate immune cells, especially neutrophils, due to a specific fixation method before freezing. In addition, blood samples were stimulated or not with various TLR agonists to evaluate whether RA-dependent chronic inflammation can lead to immune-cell exhaustion. Results: We show that RA induces the presence of CD11blow neutrophils (33.7 and 9.2% of neutrophils in RA and controls, respectively) associated with the duration of disease. This subpopulation additionally exhibited heterogeneous expression of CD16. We also characterized a CD11ahigh Granzyme Bhigh T-cell subpopulation possibly associated with disease activity. There was no difference in cytokine expression after the stimulation of immune cells by TLR agonists between RA and controls. Conclusion: Mass cytometry and our fixation method allowed us to identify two potential new blood subpopulations of neutrophils and T-cells, which could be involved in RA pathology. The phenotypes of these two potential new subpopulations need to be confirmed using other experimental approaches, and the exact role of these subpopulations is yet to be studied.


Asunto(s)
Artritis Reumatoide , Citometría de Flujo , Inmunidad Innata , Neutrófilos , Linfocitos T , Adulto , Anciano , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Biomarcadores , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Neutrófilos/patología , Linfocitos T/inmunología , Linfocitos T/patología
7.
Cytokine ; 111: 97-105, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30138900

RESUMEN

HIV infection is associated with chronic inflammation in both non-treated and treated patients. TLR-dependent mechanisms are strongly involved in the maintenance of this inflammation. Indeed, the residual replication of HIV, the potential viral co-infections, or the products issued from microbial translocation provide TLR ligands, which contribute to trigger innate immune responses. Maintaining this chronic inflammation leads to an exhaustion of the immune system. Therefore, the TLR-dependent responses could be altered in HIV-infected patients. To investigate this hypothesis, we performed high-resolution phenotyping using a mass cytometry panel of 34 cell markers. Whole blood cells from healthy, non-treated HIV-infected and ART-treated HIV-infected subjects were stimulated with LPS, R848 or Poly(I:C). We observed the immune responses induced in T-cells, B-cells, polymorphonuclear cells, NK cells, basophils, monocytes and dendritic cells. We observed that, for either LPS or R848 stimulations, the production of cytokines in monocytes and conventional dendritic cells was delayed in treated or non-treated HIV-infected patients, compared to healthy individuals. These results suggest that leukocytes from chronic HIV-infected patients are slower to respond following the sensing of pathogens and danger signals, which may be an important feature of HIV infection.


Asunto(s)
Citocinas/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , Adulto , Femenino , Infecciones por VIH/patología , Humanos , Imidazoles/farmacología , Leucocitos/inmunología , Leucocitos/patología , Lipopolisacáridos/farmacología , Masculino , Espectrometría de Masas , Persona de Mediana Edad
8.
Clin Transl Immunology ; 6(3): e135, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28435678

RESUMEN

One of the major problems faced for the development of a vaccine against Dengue virus is the lack of a suitable animal model. Although non-human primates do not show overt signs of disease, these animals develop viremia after the infection and are the best model to evaluate vaccine candidates against this pathogen. However, for that purpose, the screening of all animals is mandatory to discard those with previous natural immunity. The most common technique used in the screening is the plaque reduction neutralization test (PRNT). However, most recent studies points to the cell-mediated immunity (CMI) as an important player in the process of controlling Dengue virus (DENV) infections. Here we presented the results from the screening of 55 rhesus monkeys housed in an animal breeding facility at Quang Ninh province, Vietnam. We evaluated the neutralizing antibody response by PRNT and determined the levels of interferon γ (IFNγ)-secretion after the viral stimulation of monkey-peripheral blood mononuclear cells, by enzyme-linked immunosorbent assay (ELISA). We found no correspondence between PRNT and IFNγ-ELISA. In fact, 19 animals were positive only by IFNγ-ELISA. Moreover, to study the protective capacity of the CMI detected, three animals with positive response by IFNγ-ELISA and negative by PRNT were inoculated with an infective preparation of DENV-3 and, as a result, no viremia was detected during 10 days after the challenge. This fact points to the importance of screening non-human primates through a CMI assay together with PRNT. This procedure should discard those false-negative cases which would be protected after the viral challenge in the immunization schedule.

9.
Viral Immunol ; 30(5): 350-358, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28418786

RESUMEN

Our group has developed a subunit vaccine candidate against Dengue virus (DENV) based on two different viral regions, the domain III of the envelope protein and the capsid protein. The chimeric proteins for each serotype (DIIIC1-4), aggregated with the oligodeoxynucleotide 39 M, form the tetravalent formulation named Tetra DIIIC. Tetra DIIIC induces a protective immune response in mice when it is inoculated by intraperitoneal route. However, if children are the main targets for a DENV vaccine, then a needle-free route of administration should be attractive and advantageous. In this study, we evaluated for the first time, in vivo, a vaccine candidate against DENV based on recombinant proteins using the intranasal route. After three doses of Tetra DIIIC in mice, we measured the humoral immune response against the four DENV serotypes and the corresponding recombinant proteins. Moreover, the functionality of these antibodies was evaluated through a plaque reduction neutralization test. Finally, to assess the cellular immune response induced, we measured the IFN-γ-levels secreted by spleen cells after in vitro stimulation with DENV. The results presented in this study indicate that the intranasal immunization with Tetra DIIIC favors the generation of DENV-specific cell-mediated immunity. On the other hand, the immunization using intraperitoneal and intranasal routes, simultaneously, generate functional antibodies (anti-DIIIC and anti-DENV) and an in vitro response of IFN-γ secretion.


Asunto(s)
Virus del Dengue/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones Endogámicos BALB C , Pruebas de Neutralización , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/inmunología , Ensayo de Placa Viral , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...