Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Reprod ; 36(4): 343-347, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37266760

RESUMEN

Coat protein I (COPI) and Coat protein II (COPII) coated vesicles mediate protein transport in the early secretory pathway. Although several components of COPII vesicles have been shown to have an essential role in Arabidopsis gametogenesis, the function of COPI components in gametogenesis has not been studied in detail. COPI consists of a heptameric complex made of α, ß, ß', γ, δ, ɛ, and ζ-COP subunits and most subunits have several isoforms in Arabidopsis. We have found that two isoforms of the ß'-COP subunit, ß'1-COP and ß'2-COP, are required for female and male gametophyte development. Reciprocal crosses between wild type plants and plants heterozygous for T-DNA insertions in ß'1-COP and ß'2-COP showed that ß'1ß'2-cop gametophytes are not transmitted.


Asunto(s)
Arabidopsis , Proteína Coatómero , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Polen/genética , Polen/metabolismo , Isoformas de Proteínas
2.
Cells ; 11(6)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35326389

RESUMEN

Coat protein I (COPI) is necessary for intra-Golgi transport and retrograde transport from the Golgi apparatus back to the endoplasmic reticulum. The key component of the COPI coat is the coatomer complex, which is composed of seven subunits (α/ß/ß'/γ/δ/ε/ζ) and is recruited en bloc from the cytosol onto Golgi membranes. In mammals and yeast, α- and ß'-COP WD40 domains mediate cargo-selective interactions with dilysine motifs present in canonical cargoes of COPI vesicles. In contrast to mammals and yeast, three isoforms of ß'-COP (ß'1-3-COP) have been identified in Arabidopsis. To understand the role of Arabidopsis ß'-COP isoforms in plant biology, we have identified and characterized loss-of-function mutants of the three isoforms, and double mutants were also generated. We have found that the trafficking of a canonical dilysine cargo (the p24 family protein p24δ5) is affected in ß'-COP double mutants. By western blot analysis, it is also shown that protein levels of α-COP are reduced in the ß'-COP double mutants. Although none of the single mutants showed an obvious growth defect, double mutants showed different growth phenotypes. The double mutant analysis suggests that, under standard growth conditions, ß'1-COP can compensate for the loss of both ß'2-COP and ß'3-COP and may have a prominent role during seedling development.


Asunto(s)
Arabidopsis , Proteína Coatómero , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Mamíferos/metabolismo , Desarrollo de la Planta , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Front Plant Sci ; 13: 817915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222477

RESUMEN

Lipid remodeling of Glycosylphosphatidylinositol (GPI) anchors is required for their maturation and may influence the localization and function of GPI-anchored proteins (GPI-APs). Maturation of GPI-anchors is well characterized in animals and fungi but very little is known about this process in plants. In yeast, the GPI-lipid remodeling occurs entirely at the ER and is initiated by the remodeling enzyme Bst1p (Post-Glycosylphosphatidylinositol Attachment to Proteins inositol deacylase 1 -PGAP1- in mammals and Arabidopsis). Next, the remodeling enzyme Per1p (Post-Glycosylphosphatidylinositol Attachment to Proteins phospholipase 3 -PGAP3- in mammals) removes a short, unsaturated fatty acid of phosphatidylinositol (PI) that is replaced with a very long-chain saturated fatty acid or ceramide to complete lipid remodeling. In mammals, lipid remodeling starts at the ER and is completed at the Golgi apparatus. Studies of the Arabidopsis PGAP1 gene showed that the lipid remodeling of the GPI anchor is critical for the final localization of GPI-APs. Here we characterized loss-of-function mutants of Arabidopsis Per1/PGAP3 like genes (AtPGAP3A and AtPGAP3B). Our results suggest that PGAP3A function is required for the efficient transport of GPI-anchored proteins from the ER to the plasma membrane/cell wall. In addition, loss of function of PGAP3A increases susceptibility to salt and osmotic stresses that may be due to the altered localization of GPI-APs in this mutant. Furthermore, PGAP3B complements a yeast strain lacking PER1 gene suggesting that PGAP3B and Per1p are functional orthologs. Finally, subcellular localization studies suggest that PGAP3A and PGAP3B cycle between the ER and the Golgi apparatus.

4.
Plant Physiol ; 187(4): 2156-2173, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618080

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Proteínas de la Membrana/genética , Monoéster Fosfórico Hidrolasas/genética , Transporte de Proteínas/genética
5.
Plant Signal Behav ; 16(3): 1858629, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33432878

RESUMEN

Coat Protein I (COPI) consists of a complex (coatomer) formed by seven subunits (α-, ß-, ß'-, γ-, δ-, ε-, and ζ-COP) that is recruited to Golgi membranes to form vesicles that shuttle from the Golgi apparatus to the ER and between Golgi stacks. Recently, it has been described that loss of function mutants of the two Arabidopsis ß-COP genes, ß1-COP and ß2-COP, showed increased sensitivity to salt stress (NaCl). Using a mixture of either Na+ or Cl- salts, we have now found that ß-COP mutants are specifically and highly sensitive to chloride ions.


Asunto(s)
Arabidopsis/metabolismo , Cloruros/farmacología , Proteína Coatómero/genética , Mutación/genética , Iones , Fenotipo , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo
6.
Methods Mol Biol ; 2200: 147-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175376

RESUMEN

Transient expression in Arabidopsis thaliana seedlings allows fast expression of fluorescent markers for different subcellular compartments. This protocol describes a transient transformation assay with five-day-old seedlings using Agrobacterium tumefaciens-mediated vacuum infiltration. Three days after infiltration of the Agrobacterium containing an expression vector for a fluorescent marker of interest, cotyledon cells expressing the fluorescent protein can be imaged in a confocal microscope. This assay allows high-throughput screening of new constructs and the study of the localization of a large number of subcellular markers in Arabidopsis seedlings including wild-type, stable over-expressing and mutant lines.


Asunto(s)
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Técnicas de Transferencia de Gen , Plantas Modificadas Genéticamente/genética , Plantones/genética , Transformación Genética
7.
Plant Physiol ; 184(3): 1333-1347, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900981

RESUMEN

p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the transport to the plasma membrane of glycosylphosphatidylinositol (GPI)-anchored proteins. We found that GPI-anchored proteins mostly localized to the ER in p24δ3δ4δ5δ6 mutant cells, in contrast to plasma membrane proteins with other types of membrane attachment. The plasma membrane localization of GPI-anchored proteins was restored in the p24δ3δ4δ5δ6 mutant upon transient expression of a single member of the p24 δ-1 subclass, RFP-p24δ5, which was dependent on the coiled-coil domain in p24δ5. The coiled-coil domain was also important for a direct interaction between p24δ5 and the GPI-anchored protein arabinogalactan protein4 (AGP4). These results suggest that Arabidopsis p24 proteins are involved in ER export and transport to the plasma membrane of GPI-anchored proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Variación Genética , Genotipo , Glicosilfosfatidilinositoles/genética , Proteínas de la Membrana/genética , Mutación , Transporte de Proteínas/genética
8.
Front Plant Sci ; 11: 430, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351533

RESUMEN

The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/ß/ß'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the ß-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the function of ß-COP. The results we have obtained suggest that ß-COP is required for plant growth and salt tolerance. In addition, ß-COP function seems to be required for maintaining the structure of the Golgi apparatus.

9.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28871045

RESUMEN

The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, probably due to an inhibition of COPI-dependent Golgi-to-ER transport of ERD2a and thus retrieval of K/HDEL ligands. Although the p24δ3δ4δ5δ6 mutant showed enhanced sensitivity to salt stress, it did not show obvious phenotypic alterations under standard growth conditions. Interestingly, this mutant showed a constitutive activation of the unfolded protein response (UPR) and the transcriptional upregulation of the COPII subunit gene SEC31A, which may help the plant to cope with the transport defects seen in the absence of p24 proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Transporte de Proteínas , Vías Secretoras/genética , Respuesta de Proteína Desplegada/genética
10.
Mol Plant ; 10(8): 1095-1106, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28735024

RESUMEN

The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis, p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p24 function remain unclear. Here, we show that Arabidopsis p24δ5 protein is N-glycosylated in its GOLD domain. Furthermore, we demonstrate that this post-translational modification is important for its coupled transport with p24ß2 at the ER-Golgi interface, for its interaction with the K/HDEL receptor ERD2, and for retrograde transport of ERD2 and K/HDEL ligands from the Golgi apparatus back to the ER.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosilación
11.
J Exp Bot ; 68(3): 391-401, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025315

RESUMEN

COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (α-, ß-, ß'-, γ-, δ-, ε- and ζ-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of γ and δ, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-COP isoform. The α2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the α2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of α2-COP affects the expression of secretory pathway genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Retículo Endoplásmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Plant Signal Behav ; 11(8): e1212801, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27603315

RESUMEN

PIN-FORMED (PIN) family proteins direct polar auxin transport based on their asymmetric (polar) localization at the plasma membrane. In the case of PIN1, it mainly localizes to the basal (rootward) plasma membrane domain of stele cells in root meristems. Vesicular trafficking events, such as clathrin-dependent PIN1 endocytosis and polar recycling, are probably the main determinants for PIN1 polar localization. However, very little is known about the signals which may be involved in binding the µ-adaptin subunit of clathrin adaptor complexes (APs) for sorting of PIN1 within clathrin-coated vesicles, which can determine its trafficking and localization. We have performed a systematic mutagenesis analysis to investigate putative sorting motifs in the hydrophilic loop of PIN1. We have found that a non-canonical motif, based in a phenylalanine residue, through the binding of µA(µ2)- and µD(µ3)-adaptin, is important for PIN1 endocytosis and for PIN1 traffcking along the secretory pathway, respectively. In addition, tyrosine-based motifs, which also bind different µ-adaptins, could also contribute to PIN1 trafficking and localization.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Endocitosis/genética , Endocitosis/fisiología , Proteínas de Transporte de Membrana/genética
13.
Plant Physiol ; 171(3): 1965-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208248

RESUMEN

In contrast with the wealth of recent reports about the function of µ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding µ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different µ-adaptins in vitro. However, only Phe-165, which binds µA(µ2)- and µD(µ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a µA (µ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a µD (µ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of µA (µ2)- and µD (µ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Subunidades mu de Complejo de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Citosol/metabolismo , Endocitosis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Transporte de Membrana/genética , Mutación , Fenilalanina/genética , Plantas Modificadas Genéticamente , Señales de Clasificación de Proteína/genética , Transporte de Proteínas
14.
Protoplasma ; 253(4): 967-85, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26224213

RESUMEN

p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Secuencia de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Secuencia Conservada , Evolución Molecular , Humanos , Proteínas de Transporte de Membrana/química , Especificidad de Órganos , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis
15.
Plant J ; 80(6): 1014-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25312353

RESUMEN

The p24 proteins belong to a family of type I membrane proteins which cycle between the endoplasmic reticulum (ER) and Golgi via coat protein I (COPI) and COPII vesicles. Current nomenclature classifies them into four subfamilies, although plant p24 proteins belong to either the p24ß or the p24δ subfamilies. Here, we show that Arabidopsis p24δ5/δ9 and HDEL ligands shift the steady-state distribution of the K/HDEL receptor ERD2 from the Golgi to the ER. We also show that p24δ5/δ9 interact directly with ERD2. This interaction requires the Golgi dynamics (GOLD) domain in p24δ5 and is much higher at acidic than at neutral pH, consistent with both proteins interacting at the cis-Golgi. In addition, p24δ5 also inhibits the secretion of HDEL ligands, but not constitutive secretion, showing a role for p24δ5 in retrograde Golgi-to-ER transport. Both p24δ5 and ERD2 interact with ADP-ribosylation factor 1 (ARF1) and COPI subunits, mostly at acidic pH, consistent with COPI vesicles being involved in retrograde transport of both proteins. In contrast, both proteins interact with the COPII subunit Sec23, mostly at neutral pH, consistent with this interaction taking place at the ER for anterograde transport to the Golgi apparatus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Receptores de Péptidos/genética , Factores de Transcripción/genética
16.
J Exp Bot ; 64(11): 3147-67, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23918961

RESUMEN

p24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24ß, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24ß and p24δ subfamilies, the latter probably including two different subclasses. It has previously been shown that transiently expressed red fluorescent protein (RFP)-p24δ5 (p24δ1 subclass) localizes to the endoplasmic reticulum (ER) at steady state as a consequence of highly efficient COPI-based recycling from the Golgi apparatus. It is now shown that transiently expressed RFP-p24δ9 (p24δ2 subclass) also localizes to the ER. In contrast, transiently expressed green fluorescent protein (GFP)-p24ß3 mainly localizes to the Golgi apparatus (as p24ß2) and exits the ER in a COPII-dependent manner. Immunogold electron microscopy in Arabidopsis root tip cells using specific antibodies shows that endogenous p24δ9 localizes mainly to the ER but also partially to the cis-Golgi. In contrast, endogenous p24ß3 mainly localizes to the Golgi apparatus. By a combination of experiments using transient expression, knock-out mutants, and co-immunoprecipitation, it is proposed that Arabidopsis p24 proteins form different heteromeric complexes (including members of the ß and δ subfamilies) which are important for their stability and their coupled trafficking at the ER-Golgi interface. Evidence is also provided for a role for p24δ5 in retrograde Golgi-ER transport of the KDEL-receptor ERD2.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Microscopía Confocal , Microscopía Electrónica , Plásmidos/genética , Vías Secretoras/genética , Vías Secretoras/fisiología
17.
J Exp Bot ; 63(11): 4243-61, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22577184

RESUMEN

p24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24ß, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24ß and p24δ subfamilies. It has previously been shown that transiently expressed red fluorescent protein (RFP)-p24δ5 localizes to the endoplasmic reticulum (ER) as a consequence of highly efficient COPI-based recycling from the Golgi apparatus. Using specific antibodies, endogenous p24δ5 has now been localized to the ER and p24ß2 to the Golgi apparatus in Arabidopsis root tip cells by immunogold electron microscopy. The relative contributions of the cytosolic tail and the luminal domains to p24δ5 trafficking have also been characterized. It is demonstrated that whereas the dilysine motif in the cytoplasmic tail determines the location of p24δ5 in the early secretory pathway, the luminal domain may contribute to its distribution downstream of the Golgi apparatus. By using knock-out mutants and co-immunoprecipitation experiments, it is shown that p24δ5 and p24ß2 interact with each other. Finally, it is shown that p24δ5 and p24ß2 exhibit coupled trafficking at the ER-Golgi interface. It is proposed that p24δ5 and p24ß2 interact with each other at ER export sites for ER exit and coupled transport to the Golgi apparatus. Once in the Golgi, p24δ5 interacts very efficiently with the COPI machinery for retrograde transport back to the ER.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas
18.
Traffic ; 9(5): 770-85, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18266912

RESUMEN

p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the -3, -4 position and a diaromatic motif in the -7, -8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein (Atp24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. Atp24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, Atp24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of Atp24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo
19.
Plant J ; 48(5): 757-70, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17059402

RESUMEN

Plant cells possess much of the molecular machinery necessary for receptor-mediated endocytosis (RME), but this process still awaits detailed characterization. In order to identify a reliable and well-characterized marker to investigate RME in plant cells, we have expressed the human transferrin receptor (hTfR) in Arabidopsis protoplasts. We have found that hTfR is mainly found in endosomal (Ara7- and FM4-64-positive) compartments, but also at the plasma membrane, where it mediates binding and internalization of its natural ligand transferrin (Tfn). Cell surface expression of hTfR increases upon treatment with tyrphostin A23, which inhibits the interaction between the YTRF endocytosis signal in the hTfR cytosolic tail and the mu2-subunit of the AP2 complex. Indeed, tyrphostin A23 inhibits Tfn internalization and redistributes most of hTfR to the plasma membrane, suggesting that the endocytosis signal of hTfR is functional in Arabidopsis protoplasts. Co-immunoprecipitation experiments show that hTfR is able to interact with a mu-adaptin subunit from Arabidopsis cytosol, a process that is blocked by tyrphostin A23. In contrast, treatment with brefeldin A, which inhibits recycling from endosomes back to the plasma membrane in plant cells, leads to the accumulation of Tfn and hTfR in larger patches inside the cell, reminiscent of BFA compartments. Therefore, hTfR has the same trafficking properties in Arabidopsis protoplasts as in animal cells, and cycles between the plasma membrane and endosomal compartments. The specific inhibition of Tfn/hTfR internalization and recycling by tyrphostin A23 and BFA, respectively, thus provide valuable molecular tools to characterize RME and the recycling pathway in plant cells.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Brefeldino A/farmacología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Tirfostinos/farmacología , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Humanos , Plantas Modificadas Genéticamente , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Protoplastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...