Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Crit Care Med (Targu Mures) ; 10(1): 73-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39108793

RESUMEN

Introduction: Pregnant women manifest an increased risk of developing coagulation disorders. Unfractionated heparin (HEP) and low-molecular-weight heparin (LMWHep) are considered as selective medication in the case of pregnancy which needs anticoagulant treatment. In addition to anticoagulant properties, HEP and its derivatives manifest other properties including anti-cancer potential. According to Globocan's latest data, colorectal cancer (CRC) is the second most encountered form of malignancy in the case of women, manifesting some special particularities, as confusion of symptoms from cancer with symptoms encountered normally in pregnant women (such as constipation or rectal bleeding), delayed diagnosis because of limitations imposed both for the fetus and for the mother, and the need for special treatment. Aim: The aim of the present work is to follow the incidence and safety of consumption of HEP and LMWHep in the case of pregnant women and to analyze their potential on the HCT 116 colorectal carcinoma cells. Results: Analyzing the consumption of heparins in case of pregnant women hospitalized from 01.01.2022 to 31.12.2022 at the Pius Brînzeu" Emergency Clinical Hospital from Timisoara, Obstetrics and Gynecology Clinic I, it was observed that 44,6% of the patients were administered the following medication and no administration risks were observed. When tested on HCT 116 cells, heparins manifested a significant anti-migratory effect (with wound healing rates of 2,6%, when tested with HEP 100 UI concentration and 14.52% wound healing rates in case of fraxiparine 100 UI). In addition, different signs of apoptosis were observed, suggesting the pro-apoptotic potential of the tested substances. Conclusions: Heparins remain the preferred medication to be administered to pregnant women with the potential for coagulation disorders, showing a high safety profile. Testing on the cancerous line of colorectal carcinoma highlights important properties that stimulate future studies, to establish the anti-tumor potential and the exact mechanism of action.

2.
Dent J (Basel) ; 12(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057008

RESUMEN

Chlorhexidine (CHX) represents one of the most commonly used antiseptics in dentistry and other medical-pharmaceutical fields due to its broad-spectrum antimicrobial activity. However, the potential toxic events arising from its common use in practice has become a subject of increasing concern. Thus, the present study was designed to investigate the potential toxicity of CHX digluconate at concentrations covering its antibacterial properties (0.0002-0.2%) in HGF primary gingival fibroblasts, HaCaT immortalized human keratinocytes, and JB6 Cl 41-5a epidermal cells, as well as its irritant action in ovo. Our results indicate that CHX exerted a concentration- and time-dependent cytotoxicity in all cell lines, which was evidenced by the reduction in cell viability, number, and confluence, damaged cell membrane integrity, impaired cell morphology, and specific apoptotic nuclear shape. The highest cytotoxicity was caused by CHX digluconate 0.02% and 0.2%, concentrations, at which an irritant effect on the chorioallantoic membrane was also observed. The novel findings revealed in this research contribute to the overall safety profile of CHX and stand as a basis for further investigations in this regard.

3.
Biomol Biomed ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907734

RESUMEN

Silibinin (SIL), the most active phytocompound from Silybum marianum (L.), exerts many biological effects but has low stability and bioavailability. To overcome these drawbacks, the current research proposed the synthesis of silibilin oleate (SIL-O) and silibilin linoleate (SIL-L) derivatives as prodrugs with potentially optimized properties for biomedical applications, and the establishment of their in vitro-in ovo safety profiles. The physicochemical characterization of the obtained compounds using density functional theory (DFT) calculations, and Raman and 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the formation of SIL-O and SIL-L complexes. Computational predictions revealed that these lipophilic derivatives present a lower drug-likeness score (-29.96 for SIL-O and -23.55 for SIL-L) compared to SIL, but an overall positive drug score (0.07) and no risk for severe adverse effects. SIL-O and SIL-L showed no cytotoxicity or impairment in cell migration at low concentrations, but at the highest concentration (100 µM), they displayed distinct toxicological profiles. SIL-L was more cytotoxic (on cardiomyoblasts - H9c2(2-1), hepatocytes - HepaRG, and keratinocytes - HaCaT) than SIL-O or SIL, significantly inhibiting cell viability (< 60%), altering cellular morphology, reducing cell confluence (< 70%), and inducing prominent apoptotic-like nuclear features. At the concentration of 100 µM, SIL-O presented an irritation score (IS) of 0.61, indicating a lack of irritant effect on the chorioallantoic membrane (CAM), while SIL-L was classified as a slight irritant with an IS of 1.99. These findings outline a more favorable in vitro and in ovo biocompatibility for SIL-O compared to SIL-L, whose applications are dosage-limited due to potential toxicity.

4.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794168

RESUMEN

In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.

5.
Life (Basel) ; 14(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792627

RESUMEN

Colorectal cancer (CRC) is a heterogenous pathology with high incidence and mortality rates globally, but it is also preventable so finding the most promising candidates (natural compounds or repurposed drugs) to be chemopreventive alternatives has become a topic of interest in recent years. The present work aims to elucidate the potential effects of a combination between genistein (GEN), an isoflavone of natural origin, and aspirin (ASA) in CRC prevention/treatment by performing an in vitro evaluation in human colorectal cancer cells (HCT-116) and an in ovo analysis using the chick embryo chorioallantoic membrane (CAM) model. Cell viability was verified by an MTT (migratory potential by scratch) assay, and the expressions of MMP-2 and MMP-9 were analyzed using RT-qPCR. Our results indicated a dose-dependent cytotoxic effect of ASA (2.5 mM) + GEN (10-75 µM) combination characterized by reduced cell viability and morphological changes (actin skeleton reorganization and nuclei deterioration), an inhibition of HCT-116 cells' migratory potential by down-regulating MMP-2 and MMP-9 mRNA expressions, and an antiangiogenic effect by modifying the vascular network. These promising results raise the possibility of future in-depth investigations regarding the chemopreventive/therapeutical potential of ASA+GEN combination.

6.
Biomol Biomed ; 24(4): 923-938, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431834

RESUMEN

Over the past several decades, dental health products containing fluoride have been widely employed to mitigate tooth decay and promote oral hygiene. However, concerns regarding the potential toxicological repercussions of fluoride exposure have incited continuous scientific inquiry. The current study investigated the cytotoxicity of sodium fluoride (NaF) and xylitol (Xyl), both individually and in combination, utilizing human keratinocyte (HaCaT) and osteosarcoma (SAOS-2) cell lines. In HaCaT cells, NaF decreased proliferation in a concentration-dependent manner and induced apoptosis-related morphological changes at low concentrations, whereas Xyl exhibited dose-dependent cytotoxic effects. The combination of NaF and Xyl reduced cell viability, particularly at higher concentrations, accompanied by apoptosis-like morphological alterations. Sub-cytotoxic NaF concentrations (0.2%) significantly affected caspase activity and the expression of pro-apoptotic genes. Conversely, Xyl demonstrated no discernible effect on these biological parameters. In SAOS-2 cells, NaF increased proliferation at high concentrations, contrasting with Xyl's concentration-dependent cytotoxic effects. The combination of NaF and Xyl had a minimal impact on cell viability. Sub-cytotoxic NaF concentrations did not influence caspase activity or gene expression, while Xyl induced dose-dependent morphological alterations, increased caspase activity, and upregulated pro-apoptotic gene expression. In ovo experiments on the chorioallantoic membrane (CAM) revealed that only NaF induced irritant effects, suggesting potential vascular adverse outcomes. This study advocates for the combined use of NaF and Xyl, highlighting their cytotoxicity benefits in healthy cells while maintaining safety considerations for tumor cells.


Asunto(s)
Apoptosis , Proliferación Celular , Supervivencia Celular , Fluoruro de Sodio , Xilitol , Fluoruro de Sodio/toxicidad , Humanos , Xilitol/toxicidad , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Animales , Embrión de Pollo , Queratinocitos/efectos de los fármacos , Células HaCaT
7.
Life (Basel) ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38398724

RESUMEN

Lung cancer (LC) represents one of the most prevalent health issues globally and is a leading cause of tumor-related mortality. Despite being one the most attractive compounds of plant origin due to its numerous biological properties, the therapeutic applications of rutin (RUT) are limited by its disadvantageous pharmacokinetics. Thus, the present study aimed to evaluate in vitro the application of two RUT fatty acids bioconjugates, rutin oleate (RUT-O) and rutin linoleate (RUT-L), as potential improved RUT-based chemotherapeutics in non-small cell lung cancer (NSCLC) treatment. The results indicate that both compounds lacked cytotoxic potential in EpiAirway™ tissues at concentrations up to 125 µM. However, only RUT-L exerted anti-tumorigenic activity in NCI-H23 NSCLC cells after 24 h of treatment by reducing cell viability (up to 47%), proliferation, and neutral red uptake, causing cell membrane damage and lactate dehydrogenase (LDH) leakage, affecting cytoskeletal distribution, inducing cytoplasmic vacuolation, and increasing oxidative stress. The cytopathic effects triggered by RUT-L at 100 and 125 µM are indicators of a non-apoptotic cell death pathway that resembles the characteristics of paraptosis. The novel findings of this study stand as a basis for further investigations on the anti-cancer properties of RUT-L and their underlying mechanisms.

8.
Plants (Basel) ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896013

RESUMEN

Cancer is a significant health problem worldwide; consequently, new therapeutic alternatives are being investigated, including those found in the vegetable kingdom. Eugenol (Eug) has attracted attention for its therapeutic properties, especially in stomatology. The purpose of this study was to investigate the cytotoxicity of Eug, in vitro, on osteosarcoma (SAOS-2) and oropharyngeal squamous cancer (Detroit-562) cells, as well as its potential irritant effect in ovo at the level of the chorioallantoic membrane (CAM). The data obtained following a 72 h Eug treatment highlighted the reduction in cell viability up to 41% in SAOS-2 cells and up to 37% in Detroit-562 cells, respectively. The apoptotic-like effect of Eug was indicated by the changes in cell morphology and nuclear aspect; the increase in caspase-3/7, -8 and -9 activity; the elevated expression of Bax and Bad genes; and the increase in luminescence signal (indicating phosphatidylserine externalization) that preceded the increase in fluorescence signal (indicating the compromise of membrane integrity). Regarding the vascular effects, slight signs of coagulation and vascular lysis were observed, with an irritation score of 1.69 for Eug 1 mM. Based on these results, the efficiency of Eug in cancer treatment is yet to be clarified.

9.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37370604

RESUMEN

Melanoma, the tumor arising from the malignant transformation of pigment-producing cells-the melanocytes-represents one of the most severe cancer types. Despite their rarity compared to cutaneous melanoma, the extracutaneous subtypes such as uveal melanoma (UM), acral lentiginous melanoma (ALM), and mucosal melanoma (MM) stand out due to their increased aggressiveness and mortality rate, demanding continuous research to elucidate their specific pathological features and develop efficient therapies. Driven by the emerging progresses made in the preclinical modeling of melanoma, the current paper covers the most relevant in vitro, in vivo, and in ovo systems, providing a deeper understanding of these rare melanoma subtypes. However, the preclinical models for UM, ALM, and MM that were developed so far remain scarce, and none of them is able to completely simulate the complexity that is characteristic to these melanomas; thus, a continuous expansion of the existing library of experimental models is pivotal for driving advancements in this research field. An overview of the applicability of precision medicine in the management of rare melanoma subtypes is also provided.

10.
Life (Basel) ; 13(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37240789

RESUMEN

Solar ultraviolet radiation (UVR) is responsible for the development of many skin diseases, including malignant melanoma (MM). This study assessed the phototoxic effects of UVA, and UVB radiations on healthy and pathologic skin cells by evaluating the behavior of human keratinocytes (HaCaT) and MM cells (A375) at 24 h post-irradiation. The main results showed that UVA 10 J/cm2 exerted no cytotoxicity on HaCaT and A375 cells, while UVB 0.5 J/cm2 significantly reduced cell viability and confluence, induced cell shrinkage and rounding, generated nuclear and F-actin condensation, and induced apoptosis by modulating the expressions of Bax and Bcl-2. The association of UVA 10 J/cm2 with UVB 0.5 J/cm2 (UVA/UVB) induced the highest cytotoxicity in both cell lines (viability < 40%). However, the morphological changes were different-HaCaT cells showed signs of necrosis, while in A375 nuclear polarization and expulsion from the cells were observed, features that indicate enucleation. By unraveling the impact of different UVR treatments on the behavior of normal and cancer skin cells and describing enucleation as a novel process involved in the cytotoxicity of UVA/UVB irradiation, these findings bridge the gap between the current and the future status of research in the field.

11.
Oral Health Prev Dent ; 21(1): 103-112, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37014214

RESUMEN

PURPOSE: Since NaOCl acts as a strong oxidizing agent and presents potential toxicity, this study was adressed to evaluate the in-vitro safety of NaOCl solutions at concentrations below the limit of patient tolerance, i.e. ≥ 0.5%. MATERIALS AND METHODS: First, an in-silico evaluation was conducted to predict the potential toxicity of NaOCl in terms of mutagenic, tumorigenic, irritant, and reproductive risks, as well as some drug-like properties of the molecule. The in-vitro experiments were based on 2D and 3D models. For the 2D approach, two selected cell lines - HaCaT (human skin keratinocytes) and HGF (human gingival fibroblasts) - were exposed to NaOCl at five concentrations (0.05 - 0.5%) for 10, 30, and 60 s to simulate possible clinical administration. The irritative potential of NaOCl 0.05% and 0.25% was assessed in a 3D in-vitro model (EpiDerm, reconstructed human epidermis). Statistical significance was set at p < 0.05. RESULTS: The main findings suggest that NaOCl exerts cytotoxicity towards HaCaT immortalised keratinocytes and HGF primary gingival fibroblasts in a cell type-, dose- and time-dependent manner, with the most prominent effect being recorded in HaCaT cells after 60 s of treatment with NaOCl 0.5%. However, NaOCl was computationally predicted as free of mutagenic, tumorigenic, irritant, and reproductive toxicity, and showed no irritative potential in 3D reconstructed epidermis at concentrations of 0.05% and 0.25%. CONCLUSION: Further clinical and histological studies are required to confirm these results, as well as elucidate the potential cytotoxic mechanism induced by NaOCl in HaCaT and HGF cells at the tested concentrations.


Asunto(s)
Periodontitis , Hipoclorito de Sodio , Humanos , Hipoclorito de Sodio/farmacología , Irritantes , Línea Celular
12.
Front Pharmacol ; 13: 1000608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210849

RESUMEN

Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)-rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1-100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes-HepaRG, and keratinocytes-HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration-and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds-RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.

13.
Medicina (Kaunas) ; 58(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744047

RESUMEN

Background and Objectives: The consumption of dietary supplements has increased over the last decades among pregnant women, becoming an efficient resource of micronutrients able to satisfy their nutritional needs during pregnancy. Furthermore, gestational drug administration might be necessary to treat several pregnancy complications such as hypertension. Folic acid (FA) and folate (FT) supplementation is highly recommended by clinicians during pregnancy, especially for preventing neural tube birth defects, while labetalol (LB) is a ß-blocker commonly administered as a safe option for the treatment of pregnancy-related hypertension. Currently, the possible toxicity resulting from the co-administration of FA/FT and LB has not been fully evaluated. In light of these considerations, the current study was aimed at investigating the possible in vitro cardio- and hepato-toxicity of LB-FA and LB-FT associations. Materials and Methods: Five different concentrations of LB, FA, FT, and their combination were used in myoblasts and hepatocytes in order to assess cell viability, cell morphology, and wound regeneration. Results: The results indicate no significant alterations in terms of cell viability and morphology in myoblasts (H9c2(2-1)) and hepatocytes (HepaRG) following a 72-h treatment, apart from a decrease in the percentage of viable H9c2(2-1) cells (~67%) treated with LB 150 nM−FT 50 nM. Additionally, LB (50 and 150 nM)−FA (0.2 nM) exerted an efficient wound regenerating potential in H9c2(2-1) myoblasts (wound healing rates were >80%, compared to the control at 66%), while LB-FT (at all tested concentrations) induced no significant impairment to their migration. Conclusions: Overall, our findings indicate that LB-FA and LB-FT combinations lack cytotoxicity in vitro. Moreover, beneficial effects were noticed on H9c2(2-1) cell viability and migration from LB-FA/FT administration, which should be further explored.


Asunto(s)
Hipertensión , Labetalol , Defectos del Tubo Neural , Suplementos Dietéticos , Femenino , Ácido Fólico/farmacología , Humanos , Labetalol/farmacología , Embarazo
14.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406610

RESUMEN

Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.

15.
Materials (Basel) ; 15(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161136

RESUMEN

Malocclusion is a global health problem, mainly affecting children and adolescents. For this reason, orthodontic treatment must be, on the one hand, safe, non-toxic, and effective and, on the other hand, it must have the best possible esthetic profile. Thus, the use of orthodontic appliances is addressed to all age groups, including young children, for a long period of time, which is why their safety profile is a matter of real interest. For this reason, the purpose of the present study was to evaluate the safety and biocompatibility of an acrylic removable orthodontic appliance made of polymethylmethacrylate and stainless steel alloy made by our team of researchers. To verify the biocompatibility of the medical device, it was immersed in artificial saliva with three different pHs (3, 7, and 10) for a period of ten days. Subsequently, the three types of saliva were tested on human keratinocytes (HaCaT cell line) in terms of viability and modification of cell morphology. Finally, the use of 3D reconstructed human epidermis verified the cytotoxic and irritating potential of the medical device, thus providing relevant information regarding its biocompatibility. The results revealed that by maintaining the orthodontic device in the saliva there is no release of substances with a toxic effect on the human keratinocytes and on the 3D reconstructed human epidermis. There were also no significant changes in cell morphology. In conclusion, it is suggested that the acrylic removable appliance has a safety profile recommended for in vivo use.

16.
Plants (Basel) ; 10(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34961223

RESUMEN

Colorectal carcinoma (CRC) is one of the most frequently diagnosed cancer types with current deficient and aggressive treatment options, but various studied alternative therapies are able to efficiently contribute to its management. Essential oils (EOs) contain valuable compounds, with antibacterial, anti-inflammatory, and anticancer properties, which might serve as effective solutions in CRC prophylaxis or treatment. The aim of the present work was to evaluate the phytochemical composition and in vitro biological activity of essential oils derived from Hippophae rhamnoides (Hr_EO), Cymbopogon citratus (Cc_EO), and Ocimum basilicum (Ob_EO) species on HT-29 and Caco-2 human colorectal adenocarcinoma cell lines. The main compounds identified by GC-MS analysis were estragole (Hr_EO, Ob_EO), alpha- and beta-citral (Cc_EO). All tested EOs exerted a dose-dependent cytotoxicity on both cell lines by reducing the cell viability, especially in the case of Cc_EO, where at 75 µg/mL the viability percentages reached the values of 62.69% (Caco-2) and 64.09% (HT-29), respectively. The nuclear morphology evaluation highlighted significant dysmorphologies on both lines after their treatment with EOs at 75 µg/mL.

17.
Curr Oncol ; 28(6): 5054-5066, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34940064

RESUMEN

Malignant melanoma (MM) represents the most life-threatening skin cancer worldwide, with a narrow and inefficient chemotherapeutic arsenal available in advanced disease stages. Lupeol (LUP) is a triterpenoid-type phytochemical possessing a broad spectrum of pharmacological properties, including a potent anticancer effect against several neoplasms (e.g., colorectal, lung, and liver). However, its potential as an anti-melanoma agent has been investigated to a lesser extent. The current study focused on exploring the impact of LUP against two human MM cell lines (A375 and RPMI-7951) in terms of cell viability, confluence, morphology, cytoskeletal distribution, nuclear aspect, and migration. Additionally, the in ovo antiangiogenic effect has been also examined. The in vitro results indicated concentration-dependent and selective cytotoxicity against both MM cell lines, with estimated IC50 values of 66.59 ± 2.20 for A375, and 45.54 ± 1.48 for RPMI-7951, respectively, accompanied by a reduced cell confluence, apoptosis-specific nuclear features, reorganization of cytoskeletal components, and inhibited cell migration. In ovo, LUP interfered with the process of angiogenesis by reducing the formation of neovascularization. Despite the potential anti-melanoma effect illustrated in our in vitro-in ovo study, further investigations are required to elucidate the underlying LUP-induced effects in A375 and RPMI-7951 MM cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Apoptosis , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Neoplasias Cutáneas/patología
18.
Toxics ; 9(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34564377

RESUMEN

Malignant melanoma represents the deadliest type of skin cancer with narrow treatment options in advanced stages. Herbal constituents possessing anticancer properties occupy a particular spot in melanoma research as potential chemotherapeutics. Rutin (RUT) is a natural compound exerting antioxidant, antimicrobial, anti-inflammatory, UV-filtering, and SPF-enhancing activities that are beneficial to the skin; however, its effect as an anti-melanoma agent is less investigated. The current study is focused on assessing the cytotoxic potential of RUT against two different human melanoma cell lines: RPMI-7951 and SK-MEL-28 by evaluating its impact in terms of cell viability, cells' morphology, and nuclear aspect assessment, and senescence-inducing properties. The results indicate a dose-dependent decrease in the viability of both cell lines, with calculated IC50 values of 64.49 ± 13.27 µM for RPMI-7951 cells and 47.44 ± 2.41 µM for SK-MEL-28, respectively, accompanied by a visible reduction in the cell confluency and apoptotic features within the cell nuclei. RUT exerted a senescence-inducing property highlighted by the elevated expression of senescent-associated beta-galactosidase (SA-ß-gal) in SK-MEL-28 cells. Despite the in vitro anti-melanoma effect revealed by our results, further studies are required to elucidate the mechanisms of RUT-induced cytotoxicity and senescence in melanoma cells.

19.
Cancers (Basel) ; 13(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34359553

RESUMEN

Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.

20.
Molecules ; 26(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299450

RESUMEN

The skin integrity is essential due to its pivotal role as a biological barrier against external noxious factors. Pentacyclic triterpenes stand as valuable plant-derived natural compounds in the treatment of skin injuries due to their anti-inflammatory, antioxidant, antimicrobial, and healing properties. Consequently, the primary aim of the current investigation was the development as well as the physicochemical and pharmaco-toxicological characterization of betulin- and lupeol-based oleogels (Bet OG and Lup OG) for topical application in skin injuries. The results revealed suitable pH as well as organoleptic, rheological, and textural properties. The penetration and permeation of Bet and Lup oleogels through porcine ear skin as well as the retention of both oleogels in the skin were demonstrated through ex vivo studies. In vitro, Bet OG and Lup OG showed good biocompatibility on HaCaT human immortalized cells. Moreover, Bet OG exerted a potent wound-healing property by stimulating the migration of the HaCaT cells. The in ovo results demonstrated the non-irritative potential of the developed formulations. Additionally, the undertaken in vivo investigation indicated a positive effect of oleogels treatment on skin parameters by increasing skin hydration and decreasing erythema. In conclusion, oleogel formulations are ideal for the local delivery of betulin and lupeol in skin disorders.


Asunto(s)
Triterpenos Pentacíclicos/administración & dosificación , Piel/lesiones , Triterpenos/administración & dosificación , Administración Cutánea , Animales , Antiinflamatorios/farmacología , Composición de Medicamentos , Femenino , Ratones , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacología , Triterpenos Pentacíclicos/farmacología , Piel/metabolismo , Porcinos , Triterpenos/farmacología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA