Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 648: 123610, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977288

RESUMEN

In this work, the feasibility of implementing a process analytical technology (PAT) platform consisting of Near Infrared Spectroscopy (NIR) and particle size distribution (PSD) analysis was evaluated for the prediction of granule downstream processability. A Design of Experiments-based calibration set was prepared using a fluid bed melt granulation process by varying the binder content, granulation time, and granulation temperature. The granule samples were characterized using PAT tools and a compaction simulator in the 100-500 kg load range. Comparing the systematic variability in NIR and PSD data, their complementarity was demonstrated by identifying joint and unique sources of variation. These particularities of the data explained some differences in the performance of individual models. Regarding the fusion of data sources, the input data structure for partial least squares (PLS) based models did not significantly impact the predictive performance, as the root mean squared error of prediction (RMSEP) values were similar. Comparing PLS and artificial neural network (ANN) models, it was observed that the ANNs systematically provided superior model performance. For example, the best tensile strength, ejection stress, and detachment stress prediction with ANN resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the 0.180, 0.395, and 0.430 RMSEPs of the PLS models, respectively. Finally, the robustness of the developed models was assessed.


Asunto(s)
Redes Neurales de la Computación , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados , Calibración , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...