Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 406: 110131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583588

RESUMEN

BACKGROUND: The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD: Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS: We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS: Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION: This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.


Asunto(s)
Magnetoencefalografía , Médula Espinal , Humanos , Médula Espinal/fisiología , Médula Espinal/diagnóstico por imagen , Magnetoencefalografía/instrumentación , Magnetoencefalografía/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Masculino , Femenino , Nervio Mediano/fisiología , Nervio Mediano/diagnóstico por imagen , Potenciales Evocados Somatosensoriales/fisiología , Magnetometría/instrumentación , Magnetometría/métodos , Adulto Joven , Estimulación Eléctrica/instrumentación
2.
Elife ; 122023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961500

RESUMEN

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.


Asunto(s)
Ritmo beta , Corteza Sensoriomotora , Humanos , Ritmo beta/fisiología , Corteza Sensoriomotora/fisiología , Movimiento/fisiología , Magnetoencefalografía
3.
Trends Cogn Sci ; 24(10): 784-788, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828692

RESUMEN

Increasing efforts are being made to understand the role of intermittent, transient, high-power burst events of neural activity. These events have a temporal, spectral, and spatial domain. Here, we argue that considering all three domains is crucial to fully reveal the functional relevance of these events in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...