Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0301343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833478

RESUMEN

The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms, repeatedly causing damage to Chilean coastal waters. The causes and behavior of algal blooms are complex and vary across different regions. As bacterial interactions with algal species are increasingly recognized as a key factor driving algal blooms, the present study identifies several bacterial candidates potentially associated with Chilean Alexandrium catenella. This research narrowed down the selection of bacteria from the Chilean A. catenella culture using antibiotic treatment and 16S rRNA metabarcoding analysis. Subsequently, seawater from two Chilean coastal stations, Isla Julia and Isla San Pedro, was monitored for two years to detect Alexandrium species and the selected bacteria, utilizing 16S and 18S rRNA gene metabarcoding analyses. The results suggested a potential association between Alexandrium species and Spongiibacteraceae at both stations. The proposed candidate bacteria within the Spongiibacteraceae family, potentially engaging in mutualistic relationships with Alexandrium species, included the genus of BD1-7 clade, Spongiibbacter, and Zhongshania.


Asunto(s)
Dinoflagelados , ARN Ribosómico 16S , Simbiosis , Dinoflagelados/genética , Dinoflagelados/fisiología , Chile , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Floraciones de Algas Nocivas , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 18S/genética
2.
Harmful Algae ; 130: 102520, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38061816

RESUMEN

To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.


Asunto(s)
Diatomeas , Diatomeas/química , Plancton , Océanos y Mares , ADN Ribosómico , Chile
3.
Mar Pollut Bull ; 190: 114878, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37002965

RESUMEN

Pinnatoxins (PnTXs) produced by the cosmopolitan dinoflagellate Vulcanodinium rugosum are highly potent cyclic imines that represent a risk for seafood consumers, artisanal fisheries, and the local aquaculture industry. Among the eight known PnTXs, pinnatoxin-G (PnTX-G) is the most frequent toxin analog detected in shellfish. Despite PnTX-G is still not internationally regulated, the French Agency for Food, Environmental and Occupational Health and Safety established that a risk for human consumers may exist when the accumulation of PnTX-G in shellfish exceeds 23 µg kg-1. This study reports the first detection of these fast-acting lipophilic toxins in localized shellfish banks (Mytilus chilensis) from the Chilean coast. Among 32 sentinel sampling stations monthly monitored for phytotoxins detection and quantification between 2021 and 2022 along the southern Chilean coast (from 36°25' S to 54°57'S), PnTx-G was only detected in shellfish from the southernmost region of Magallanes in concentrations that ranged between 15 and 100 µg kg-1, highlighting the binational (Chile/Argentina) Beagle Channel as a 'hotspot'. As Chile is one of the major mussel producers worldwide, this result raises concern about the potential adverse effect of PnTXs for human health and point to the need of governmental actions for an enhanced monitoring of these emerging toxins. To date, the production of PnTXs has not yet been associated with any microalgae species in Chilean waters.


Asunto(s)
Dinoflagelados , Mytilus , Toxinas Biológicas , Perros , Humanos , Animales , Chile , Iminas/farmacología , Mariscos , Alimentos Marinos
4.
Toxins (Basel) ; 14(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36136516

RESUMEN

Heterosigma akashiwo is the only raphidophyte described for Chilean waters. A recent 2021 fish-killing bloom event of this raphidophyte ignited scientific research, but the ichthyotoxic mechanism and environmental conditions that promote its growth are still unclear. This is the first study confirming the occurrence of H. akashiwo in Chilean waters on the basis of the region D1/D2 of the 28S ribosomal gene. The pigment signature of the CREAN_HA03 strain revealed chlorophyll-a, fucoxanthin, and violaxanthin as the most abundant pigments, but profiles were variable depending on culture and field conditions. A factorial temperature−salinity growth experiment showed a maximal growth rate of 0.48 d−1 at 17 °C and 35 in salinity, but reached a maximal cell abundance of ~50,000 cells mL−1 at 12 °C and 25 in salinity. The fatty acid profile included high levels of saturated (16:0) and polyunsaturated (18:4 ω3; 20:5 ω3) fatty acids, but superoxide production in this strain was low (~0.3 pmol O2− cell−1 h−1). The RTgill-W1 bioassay showed that the H. akashiwo strain was cytotoxic only at high cell concentrations (>47,000 cells mL−1) and after cell rupture. In conclusion, salmon mortality during H. akashiwo bloom events in Patagonian fjords is likely explained by the high production of long-chain PUFAs at high cell densities, but only in the presence of high ROS production.


Asunto(s)
Dinoflagelados , Estramenopilos , Animales , Clorofila , Estuarios , Ácidos Grasos , Ácidos Grasos Insaturados , Floraciones de Algas Nocivas , Especies Reactivas de Oxígeno , Estramenopilos/genética , Superóxidos
5.
Biometals ; 35(1): 39-51, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716889

RESUMEN

The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell-1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Chile , Floraciones de Algas Nocivas , Humanos , Hierro , Mariscos/análisis
6.
Microorganisms ; 11(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36677374

RESUMEN

Hydrogen peroxide (H2O2) has been shown to efficiently remove toxic microalgae from enclosed ballast waters and brackish lakes. In this study, in vitro experiments were conducted to assess the side effects of mitigating toxic and non-toxic dinoflagellates with H2O2. Five H2O2 concentrations (50 to 1000 ppm) were used to control the cell abundances of the toxic dinoflagellates Alexandrium catenella and Karenia selliformis and the non-toxic dinoflagellates Lepidodinium chlorophorum and Prorocentrum micans. Photosynthetic efficiency and staining dye measurements showed the high efficiency of H2O2 for mitigating all dinoflagellate species at only 50 ppm. In a bioassay carried out to test cytotoxicity using the cell line RTgill-W1, control experiments (only H2O2) showed cytotoxicity in a concentration- and time- (0 to 24 h) dependent manner. The toxic dinoflagellates, especially K. selliformis, showed basal cytotoxicity that increased with the application of hydrogen peroxide. Unexpectedly, the application of a low H2O2 concentration increased toxicity, even when mitigating non-toxic dinoflagellates. This study suggests that the fatty acid composition of toxic and non-toxic dinoflagellate species can yield toxic aldehyde cocktails after lipoperoxidation with H2O2 that can persist in water for days with different half-lives. Further studies are needed to understand the role of lipoperoxidation products as acute mediators of disease and death in aquatic environments.

7.
Mar Pollut Bull ; 172: 112783, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34365161

RESUMEN

In Chile, the toxic dinoflagellate A. catenella shows an apparent oceanic range expansion from south to the north since its first detection in 1972 in the Magallanes Region (56° S). Until 2017, A. catenella detections were restricted to a geographic area between Magallanes to Los Rios Regions (40° S). The establishment of a monitoring program in the offshore Pacific coast allowed the detection of A. catenella between 2018 and 2019 in northern areas off the Bío-Bío Region (36°S). Monoclonal cultures established from the Bío-Bío coast were genetically identified, and PSTs screened. Phylogenetic analyses determined that the Bío-Bío isolates aggregated in Group I ribotype (previously A. tamarense or A. fundyense) and the presence of PSTs analogs were confirmed. It is the northernmost detection of the toxic dinoflagellate A. catenella in the Pacific coast of Chile. These results have important implications for species monitoring and governmental management in the Bío-Bío Region.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Chile , Humanos , Océanos y Mares , Filogenia
8.
Harmful Algae ; 103: 102008, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980448

RESUMEN

Recent increase of Harmful Algal Blooms (HAB) causes world-wide ecological, economical, and health issues, and more attention is paid to frequent coastal monitoring for the early detection of HAB species to prevent or reduce such impacts. Use of molecular tools in addition to traditional microscopy-based observation has become one of the promising methodologies for coastal monitoring. However, as ribosomal RNA (rRNA) genes are commonly targeted in molecular studies, variability in the rRNA gene copy number within and between species must be considered to provide quantitative information in quantitative PCR (qPCR), digital PCR (dPCR), and metabarcoding analyses. Currently, this information is only available for a limited number of species. The present study utilized a dPCR technology to quantify copy numbers of rRNA genes per single cell in 16 phytoplankton species, the majority of which are toxin-producers, using a newly developed universal primer set accompanied by a labeled probe with a fluorophore and a double-quencher. In silico PCR using the newly developed primers allowed the detection of taxa from 8 supergroups, demonstrating universality and broad coverage of the primer set. Chelex buffer was found to be suitable for DNA extraction to obtain DNA fragments with suitable size to avoid underestimation of the copy numbers. The study successfully demonstrated the first comparison of absolute quantification of 18S rRNA copy numbers per cell from 16 phytoplankton species by the dPCR technology.


Asunto(s)
Variaciones en el Número de Copia de ADN , Floraciones de Algas Nocivas , Dosificación de Gen , Genes de ARNr , Fitoplancton/genética
9.
Sci Total Environ ; 766: 144383, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33421787

RESUMEN

The dictyochophyte microalga Pseudochattonella verruculosa was responsible for the largest farmed fish mortality ever recorded in the world, with losses for the Chilean salmon industry amounting to US$ 800 M in austral summer 2016. Super-scale climatic anomalies resulted in strong vertical water column stratification that stimulated development of a dynamic P. verruculosa thin layer (up to 38 µg chl a L-1) for several weeks in Reloncaví Sound. Hydrodynamic modeling (MIKE 3D) indicated that the Sound had extremely low flushing rates (between 121 and 200 days) in summer 2016. Reported algal cell densities of 7000-20,000 cells mL-1 generated respiratory distress in fish that was unlikely due to low dissolved oxygen (permanently >4 mg L-1). Histological examination of salmon showed that gills were the most affected organ with significant tissue damage and circulatory disorders. It is possible that some of this damage was due to a diatom bloom that preceded the Pseudochattonella event, thereby rendering the fish more susceptible to Pseudochattonella. No correlation between magnitude of fish mortality and algal cell abundance nor fish age was evident. Algal cultures revealed rapid growth rates and high cell densities (up to 600,000 cells mL-1), as well as highly complex life cycle stages that can be easily overlooked in monitoring programs. In cell-based bioassays, Chilean P. verruculosa was only toxic to the RTgill-W1 cell line following exposures to high cell densities of lysed cells (>100,000 cells mL-1). Fatty acid profiles of a cultured strain showed elevated concentrations of potentially ichthyotoxic, long-chain polyunsaturated fatty acids (PUFAs) (69.7% ± 1.8%)- stearidonic (SDA, 18:4ω3-28.9%), and docosahexaenoic acid (DHA, 22:6ω3-22.3%), suggesting that lipid peroxidation may help to explain the mortalities, though superoxide production by Pseudochattonella was low (< 0.21 ± 0.19 pmol O2- cell-1 h-1). It therefore remains unknown what the mechanisms of salmon mortality were during the Pseudochattonella bloom. Multiple mitigation strategies were used by salmon farmers during the event, with only delayed seeding of juvenile fish into the cages and towing of cages to sanctuary sites being effective. Airlift pumping, used effectively against other fish-killing HABs in the US and Canada was not effective, perhaps because it brought subsurface layers of Pseudochattonella to the surface, or and it also may have lysed the fragile cells, rendering them more lethal. The present study highlights knowledge gaps and inefficiency of contingency plans by the fish farming industry to overcome future fish-killing algal blooms under future climate change scenarios. The use of new technologies based on molecular methods for species detection, good farm practices by fish farms, and possible mitigation strategies are discussed.


Asunto(s)
Floraciones de Algas Nocivas , Estramenopilos , Animales , Canadá , Chile
10.
Harmful Algae ; 98: 101892, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33129450

RESUMEN

Karenia selliformis is a bloom-forming toxic dinoflagellate known for production of gymnodimines (GYMs) and causing mass mortalities of marine fauna. Blooms have been reported from coastal waters of New Zealand, Mexico, Tunisia, Kuwait, Iran, China and Chile. Based on molecular phylogeny, morphology, toxin production, pigment composition and cell growth of Chilean K. selliformis isolated in 2018 (CREAN_KS01 and CREAN_KS02), this study revealed a more complex diversity within this species than previously thought. A phylogenetic reconstruction based on the large sub-unit ribosomal nucleotide (LSU rDNA) and Internal Transcriber Spacer (ITS) sequences of 12 worldwide isolates showed that within the K. selliformis clade there are at least two different phylotypes with clear phenotypic differences. Morphological differences related to the dorsal-ventral compression, shape of the hyposome and the presence of pores on the left lobe of the hyposome. A comparison of pigment signatures among worldwide isolates revealed the existence of both acyl-oxyfucoxanthin and fucoxanthin-rich strains within the phylotypes. A LC-MS/MS screening on both Chilean 2018 K. selliformis strains showed for first time no GYMs production among cultured clones of this species. However, both CREAN_KS01 and CREAN_KS02 contained two compounds with the same mass transition as brevenal, a brevetoxin related compound. A fish gill cell-based assay showed that the CREAN_KS02 strain was highly cytotoxic but pure GYM standard did not exhibit loss of cell viability, even at cell concentrations equivalent or exceeding those reported in nature. The fatty acid profile of CREAN_KS02 included high levels of saturated (14:0; 16:0) and polyunsaturated (18:3ω6+18:5ω3; 22:6ω3) fatty acids but superoxide production in this strain was low (0.86±0.53 pmol O2- cell-1 h-1). A factorial T-S growth experiment using the CREAN_KS02 strain showed a µmax of 0.41±0.03 d-1 at high salinity and temperature, which points to its optimal environmental niche in offshore waters during the summer season. In conclusion, the present study provides evidence for significant genetic and phenotypic variability among worldwide isolates, which points to the existence of a K. selliformis "species complex". The massive fauna mortality during K. selliformis bloom events in the Chilean coast cannot be explained by GYMs nor brevetoxins, but can to a large extent be accounted for by the high production of long-chain PUFAs and/or still uncharacterized highly toxic compounds.


Asunto(s)
Dinoflagelados , Espectrometría de Masas en Tándem , Animales , Chile , China , Cromatografía Liquida , Dinoflagelados/genética , Nueva Zelanda , Filogenia , Túnez
11.
Harmful Algae ; 91: 101591, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057339

RESUMEN

Time series now have sufficient duration to determine harmful algal bloom (HAB) responses to changing climate conditions, including warming, stratification intensity, freshwater inputs and natural patterns of climate variability, such as the El Niño Southern Oscillation and Pacific Decadal Oscillation. Against the context of time series, such as those available from phytoplankton monitoring, dinoflagellate cyst records, the Continuous Plankton Recorder surveys, and shellfish toxin records, it is possible to identify extreme events that are significant departures from long-term means. Extreme weather events can mimic future climate conditions and provide a "dress rehearsal" for understanding future frequency, intensity and geographic extent of HABs. Three case studies of extreme HAB events are described in detail to explore the drivers and impacts of these oceanic outliers that may become more common in the future. One example is the chain-forming diatom of the genus Pseudo-nitzschia in the U.S. Pacific Northwest and its response to the 2014-16 northeast Pacific marine heat wave. The other two case studies are pelagic flagellates. Highly potent Alexandrium catenella group 1 dinoflagellate blooms (up to 150 mg/kg PST in mussels; 4 human poisonings) during 2012-17 created havoc for the seafood industry in Tasmania, south-eastern Australia, in a poorly monitored area where such problems were previously unknown. Early evidence suggests that changes in water column stratification during the cold winter-spring season are driving new blooms caused by a previously cryptic species. An expansion of Pseudochattonella cf. verruculosa to the south and A. catenella to the north over the past several years resulted in the convergence of both species to cause the most catastrophic event in the history of the Chilean aquaculture in the austral summer of 2016. Together, these two massive blooms were colloquially known as the "Godzilla-Red tide event", resulting in the largest fish farm mortality ever recorded worldwide, equivalent to an export loss of USD$800 million which when combined with shellfish toxicity, resulted in major social unrest and rioting. Both blooms were linked to the strong El Niño event and the positive phase of the Southern Annular Mode, the latter an indicator of anthropogenic climate change in the southeastern Pacific region. For each of these three examples, representing recent catastrophic events in geographically distinct regions, additional targeted monitoring was employed to improve the understanding of the climate drivers and mechanisms that gave rise to the event and to document the societal response. Scientists must be poised to study future extreme HAB events as these natural experiments provide unique opportunities to define and test multifactorial drivers of blooms.


Asunto(s)
Cambio Climático , Floraciones de Algas Nocivas , Chile , Humanos , Noroeste de Estados Unidos , Océanos y Mares
12.
Toxins (Basel) ; 11(1)2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621266

RESUMEN

Here, we present the interannual distribution of Dinophysis acuminata and Protoceratium reticulatum over a 10-year period in the Reloncaví Fjord, a highly stratified fjord in southern Chile. A realized subniche approach based on the Within Outlying Mean Index (WitOMI) was used to decompose the species' realized niche into realized subniches (found within subsets of environmental conditions). The interannual distribution of both D. acuminata and P. reticulatum summer blooms was strongly influenced by climatological regional events, i.e., El Niño Southern Oscillation (ENSO) and the Southern Annual Mode (SAM). The two species showed distinct niche preferences, with blooms of D. acuminata occurring under La Niña conditions (cold years) and low river streamflow whereas P. reticulatum blooms were observed in years of El Niño conditions and positive SAM phase. The biological constraint exerted on the species was further estimated based on the difference between the existing fundamental subniche and the realized subniche. The observed patterns suggested that D. acuminata was subject to strong biological constraint during the studied period, probably as a result of low cell densities of its putative prey (the mixotrophic ciliate Mesodinium cf. rubrum) usually observed in the studied area.


Asunto(s)
Dinoflagelados/aislamiento & purificación , Estuarios , Monitoreo Biológico , Chile , Floraciones de Algas Nocivas , Estaciones del Año
13.
Harmful Algae ; 80: 55-63, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30502812

RESUMEN

Harmful algal blooms (HAB) are responsible for massive mortalities of wild and aquacultured fish due to noticeable gill damage, but the precise fish-killing mechanisms remain poorly understood. A non-invasive microelectrode ion flux estimation (MIFE) technique was successfully applied to assess changes in membrane-transport processes in a model fish gill cell line exposed to harmful microplankton. Net Ca2+, H+, K+ ion fluxes in the rainbow trout cell line RTgill-W1 were monitored before and after addition of lysed cells of this Paralytic Shellfish Toxins (PST) producer along with purified endocellular dinoflagellate PST. It was demonstrated that PST alone do not play a role in fish gill damage during A. catenella outbreaks as previously thought, but that other ichthyotoxic metabolites from lysed algal cells (i.e. lipid peroxidation products or other unknown metabolites) result in net K+ efflux from fish gill cells and thereby gill cell death.


Asunto(s)
Branquias/patología , Floraciones de Algas Nocivas , Toxinas Marinas/toxicidad , Microalgas , Animales , Línea Celular , Transporte Iónico/efectos de los fármacos , Microelectrodos , Oncorhynchus mykiss
14.
Harmful Algae ; 55: 238-249, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-28073537

RESUMEN

The detection of sparse Alexandrium catenella-resting cysts in sediments of southern Chilean fjords has cast doubts on their importance in the recurrence of massive toxic dinoflagellate blooms in the region. The role of resting cysts and the existence of different regional Chilean populations was studied by culturing and genetic approaches to define: (1) cyst production; (2) dormancy period; (3) excystment success; (4) offspring viability and (5) strain mating compatibility. This study newly revealed a short cyst dormancy (minimum 69 days), the role of key abiotic factors (in decreasing order salinity, irradiance, temperature and nutrients) controlling cyst germination (max. 60%) and germling growth rates (up to 0.36-0.52div.day-1). Amplified fragment length polymorphism (AFLP) characterization showed significant differences in genetic distances (GD) among A. catenella populations that were primarily determined by the geographical origin of isolates and most likely driven by oceanographic dispersal barriers. A complex heterothallic mating system pointed to variable reproductive compatibility (RCs) among Chilean strains that was high among northern (Los Lagos/North Aysén) and southern populations (Magallanes), but limited among the genetically differentiated central (South Aysén) populations. Field cyst surveys after a massive 2009 bloom event revealed the existence of exceptional high cyst densities in particular areas of the fjords (max. 14.627cystscm-3), which contrast with low cyst concentrations (<221.3cystscm-3) detected by previous oceanographic campaigns. In conclusion, the present study suggests that A. catenella resting cysts play a more important role in the success of this species in Chilean fjords than previously thought. Results from in vitro experiments suggest that pelagic-benthic processes can maintain year-round low vegetative cell concentrations in the water column, but also can explain the detection of high cysts aggregations after the 2009-bloom event. Regional drivers that lead to massive outbreaks, however, are still unknown but potential scenarios are discussed.


Asunto(s)
Dinoflagelados/fisiología , Eutrofización/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Chile , Dinoflagelados/citología , Estuarios
15.
PLoS One ; 10(7): e0133549, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26197230

RESUMEN

Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 µg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude methanol and acetone extracts of Chattonella, Fibrocapsa, Heterosigma, Karlodinium and Prymnesium decreased cell viability down to 0%. These and our previous findings involving the role of fatty acids confirm that superoxide radicals are only partially involved in ichthyotoxicity and point to a highly variable contribution by other compounds such as lipid peroxidation products (e.g. aldehydes).


Asunto(s)
Eutrofización , Ácidos Grasos/metabolismo , Toxinas Marinas/metabolismo , Oncorhynchus mykiss/microbiología , Oxocinas/metabolismo , Superóxidos/metabolismo , Animales , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Dinoflagelados/patogenicidad , Branquias/metabolismo , Haptophyta/patogenicidad , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/metabolismo , Peroxidación de Lípido , Toxinas Marinas/química , Microalgas/patogenicidad , Oncorhynchus mykiss/metabolismo , Oxocinas/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...