Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825365

RESUMEN

This pilot study focuses on the design, implementation, optimization and verification of a novel solution of smart measuring of water consumption and crisis detection leading to a smart water management platform. The system implemented consists of a modular IoT platform based on a PCB (Printed Circuit Board) design using the M2.COM standard, a LoraWAN modem and a LoraWAN gateway based on the Raspberry Pi platform. The prototype is modular, low-cost, low-power, low-complex and it fully reflects the requirements of strategic technological concepts of Smart City and Industry 4.0, i.e., data integration, interoperability, (I)IoT, etc. The study was produced in cooperation with M.I.S Protivanov and VODARENSKA AKCIOVA SPOLECNOST, a.s. (industry partners distributing drinking water in the Olomouc and South-Moravian regions) to depict the current situation in the Czech Republic, characterized by extreme weather fluctuations and increasingly frequent periods of drought. These drinking water distributors are also constantly placing new demands on these smart solutions. These requirements include, above all, reliability of data transmission, modularity and, last but not least, low cost. However, smart water management (water consumption, distribution, system identification, equipment maintenance, etc.) is becoming an important topic worldwide. The functionality of the system was first verified in laboratory conditions and, then, in real operation. The study also includes checking signal propagation in the municipal area of the village of Zdarna, where the radius of the proposed measuring system was tested. A laboratory test with simulation of water leakage is also part of this work. Subsequently, the system was tested in a residential unit by means of water leakage detection using the MNF method (minimum night flow); the detection success rate was 95%.

2.
J Environ Sci Health B ; 46(7): 623-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21749250

RESUMEN

Contamination by microscopic fungi and mycotoxins in different bee pollen samples, which were stored under three different ways of storing as freezing, drying and UV radiation, was investigated. During spring 2009, 45 samples of bee-collected pollen were gathered from beekeepers who placed their bee colonies on monocultures of sunflower, rape and poppy fields within their flying distance. Bee pollen was collected from bees' legs by special devices placed at the entrance to hives. Samples were examined for the concentration and identification of microscopic fungi able to grow on Malt and Czapek-Dox agar and mycotoxins content [deoxynivalenol (DON), T-2 toxin (T-2), zearalenone (ZON) and total aflatoxins (AFL), fumonisins (FUM), ochratoxins (OTA)] by direct competitive enzyme-linked immunosorbent assays (ELISA). The total number of microscopic fungi in this study ranged from 2.98 ± 0.02 in frozen sunflower bee pollen to 4.06 ± 0.10 log cfu.g(-1) in sunflower bee pollen after UV radiation. In this study, 449 isolates belonging to 21 fungal species representing 9 genera were found in 45 samples of bee pollen. The total isolates were detected in frozen poppy pollen 29, rape pollen 40, sunflower pollen 80, in dried poppy pollen 12, rape pollen 36, sunflower 78, in poppy pollen after UV radiation treatment 54, rape 59 and sunflower 58. The most frequent isolates of microscopic fungi found in bee pollen samples of all prevalent species were Mucor mucedo (49 isolates), Alternaria alternata (40 isolates), Mucor hiemalis (40 isolates), Aspergillus fumigatus (33 isolates) and Cladosporium cladosporioides (31 isolates). The most frequently found isolates were detected in sunflower bee pollen frozen (80 isolates) and the lowest number of isolates was observed in poppy bee pollen dried (12 isolates). The most prevalent mycotoxin of poppy bee pollen was ZON (361.55 ± 0.26 µg.kg(-1)), in rape bee pollen T-2 toxin (265.40 ± 0.18 µg.kg(-1)) and in sunflower bee pollen T-2 toxin (364.72 ± 0.13 µg.kg(-1)) in all cases in frozen samples.


Asunto(s)
Abejas/química , Hongos Mitospóricos/aislamiento & purificación , Micotoxinas/análisis , Polen/química , Animales , Abejas/metabolismo , Abejas/microbiología , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Helianthus/efectos de la radiación , Hongos Mitospóricos/clasificación , Micotoxinas/clasificación , Micotoxinas/toxicidad , Papaver/efectos de los fármacos , Papaver/metabolismo , Papaver/efectos de la radiación , Polen/metabolismo , Polen/microbiología , Estaciones del Año , Eslovaquia , Toxina T-2/toxicidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...